Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Silovs
1
79 kgSweet
2
69 kgVoigt
3
76 kgRumšas
4
64 kgWauters
6
73 kgMontgomery
7
62 kgBäckstedt
8
94 kgVaughters
9
64 kgAndersson
10
71 kgJonker
11
69 kgJoachim
12
82 kgHayles
13
80 kgWadecki
15
70 kgWinn
17
70 kgVestøl
20
85 kgStephens
23
64 kgPrzydział
26
80 kgWong
27
65 kgvan der Poel
28
70 kgWegelius
29
62 kg
1
79 kgSweet
2
69 kgVoigt
3
76 kgRumšas
4
64 kgWauters
6
73 kgMontgomery
7
62 kgBäckstedt
8
94 kgVaughters
9
64 kgAndersson
10
71 kgJonker
11
69 kgJoachim
12
82 kgHayles
13
80 kgWadecki
15
70 kgWinn
17
70 kgVestøl
20
85 kgStephens
23
64 kgPrzydział
26
80 kgWong
27
65 kgvan der Poel
28
70 kgWegelius
29
62 kg
Weight (KG) →
Result →
94
62
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | SILOVS Juris | 79 |
2 | SWEET Jay | 69 |
3 | VOIGT Jens | 76 |
4 | RUMŠAS Raimondas | 64 |
6 | WAUTERS Marc | 73 |
7 | MONTGOMERY Sven | 62 |
8 | BÄCKSTEDT Magnus | 94 |
9 | VAUGHTERS Jonathan | 64 |
10 | ANDERSSON Michael | 71 |
11 | JONKER Patrick | 69 |
12 | JOACHIM Benoît | 82 |
13 | HAYLES Robert | 80 |
15 | WADECKI Piotr | 70 |
17 | WINN Julian | 70 |
20 | VESTØL Bjørnar | 85 |
23 | STEPHENS Matthew | 64 |
26 | PRZYDZIAŁ Piotr | 80 |
27 | WONG Kam-Po | 65 |
28 | VAN DER POEL Adrie | 70 |
29 | WEGELIUS Charles | 62 |