Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Dean
1
72 kgBoonen
2
82 kgHammond
3
71 kgBorrajo
4
76 kgArdila
5
58 kgMoreno
6
59 kgVan Impe
8
75 kgSavoldelli
9
72 kgNuyens
10
68 kgRubiera
11
69 kgHunt
13
76 kgPower
14
68 kgSørensen
16
71 kgZanini
17
80 kgDegano
18
68 kgBartoli
20
65 kgGadret
23
58 kgVanlandschoot
24
67 kgDay
26
68 kgThijs
27
69 kgDowning
28
64 kgDe Clercq
29
66 kgAldag
30
75 kgAdamsson
31
68 kg
1
72 kgBoonen
2
82 kgHammond
3
71 kgBorrajo
4
76 kgArdila
5
58 kgMoreno
6
59 kgVan Impe
8
75 kgSavoldelli
9
72 kgNuyens
10
68 kgRubiera
11
69 kgHunt
13
76 kgPower
14
68 kgSørensen
16
71 kgZanini
17
80 kgDegano
18
68 kgBartoli
20
65 kgGadret
23
58 kgVanlandschoot
24
67 kgDay
26
68 kgThijs
27
69 kgDowning
28
64 kgDe Clercq
29
66 kgAldag
30
75 kgAdamsson
31
68 kg
Weight (KG) →
Result →
82
58
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | DEAN Julian | 72 |
2 | BOONEN Tom | 82 |
3 | HAMMOND Roger | 71 |
4 | BORRAJO Alejandro Alberto | 76 |
5 | ARDILA Mauricio Alberto | 58 |
6 | MORENO Daniel | 59 |
8 | VAN IMPE Kevin | 75 |
9 | SAVOLDELLI Paolo | 72 |
10 | NUYENS Nick | 68 |
11 | RUBIERA José Luis | 69 |
13 | HUNT Jeremy | 76 |
14 | POWER Ciarán | 68 |
16 | SØRENSEN Nicki | 71 |
17 | ZANINI Stefano | 80 |
18 | DEGANO Enrico | 68 |
20 | BARTOLI Michele | 65 |
23 | GADRET John | 58 |
24 | VANLANDSCHOOT James | 67 |
26 | DAY Benjamin | 68 |
27 | THIJS Erwin | 69 |
28 | DOWNING Russell | 64 |
29 | DE CLERCQ Mario | 66 |
30 | ALDAG Rolf | 75 |
31 | ADAMSSON Stefan | 68 |