Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Borrajo
1
76 kgDean
2
72 kgVan Impe
3
75 kgArdila
4
58 kgZanini
5
80 kgHammond
6
71 kgNuyens
7
68 kgSavoldelli
8
72 kgRubiera
10
69 kgBoonen
11
82 kgSørensen
12
71 kgMoreno
16
59 kgDay
18
68 kgDowning
19
64 kgAldag
20
75 kgAdamsson
22
68 kgThijs
23
69 kgPower
24
68 kgBartoli
25
65 kg
1
76 kgDean
2
72 kgVan Impe
3
75 kgArdila
4
58 kgZanini
5
80 kgHammond
6
71 kgNuyens
7
68 kgSavoldelli
8
72 kgRubiera
10
69 kgBoonen
11
82 kgSørensen
12
71 kgMoreno
16
59 kgDay
18
68 kgDowning
19
64 kgAldag
20
75 kgAdamsson
22
68 kgThijs
23
69 kgPower
24
68 kgBartoli
25
65 kg
Weight (KG) →
Result →
82
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | BORRAJO Alejandro Alberto | 76 |
2 | DEAN Julian | 72 |
3 | VAN IMPE Kevin | 75 |
4 | ARDILA Mauricio Alberto | 58 |
5 | ZANINI Stefano | 80 |
6 | HAMMOND Roger | 71 |
7 | NUYENS Nick | 68 |
8 | SAVOLDELLI Paolo | 72 |
10 | RUBIERA José Luis | 69 |
11 | BOONEN Tom | 82 |
12 | SØRENSEN Nicki | 71 |
16 | MORENO Daniel | 59 |
18 | DAY Benjamin | 68 |
19 | DOWNING Russell | 64 |
20 | ALDAG Rolf | 75 |
22 | ADAMSSON Stefan | 68 |
23 | THIJS Erwin | 69 |
24 | POWER Ciarán | 68 |
25 | BARTOLI Michele | 65 |