Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Winn
1
70 kgCox
2
62 kgPaolini
4
66 kgOliphant
6
66 kgVan Impe
8
75 kgSchmitz
9
77 kgDay
10
68 kgIvanov
11
73 kgDowning
12
64 kgHammond
13
71 kgManning
14
76 kgNuyens
17
68 kgDe Waele
18
71 kgBlaudzun
19
66 kgThomas
20
71 kgSteinhauser
22
72 kgPower
23
68 kgClarke
24
70 kg
1
70 kgCox
2
62 kgPaolini
4
66 kgOliphant
6
66 kgVan Impe
8
75 kgSchmitz
9
77 kgDay
10
68 kgIvanov
11
73 kgDowning
12
64 kgHammond
13
71 kgManning
14
76 kgNuyens
17
68 kgDe Waele
18
71 kgBlaudzun
19
66 kgThomas
20
71 kgSteinhauser
22
72 kgPower
23
68 kgClarke
24
70 kg
Weight (KG) →
Result →
77
62
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | WINN Julian | 70 |
2 | COX Ryan | 62 |
4 | PAOLINI Luca | 66 |
6 | OLIPHANT Evan | 66 |
8 | VAN IMPE Kevin | 75 |
9 | SCHMITZ Bram | 77 |
10 | DAY Benjamin | 68 |
11 | IVANOV Sergei | 73 |
12 | DOWNING Russell | 64 |
13 | HAMMOND Roger | 71 |
14 | MANNING Paul | 76 |
17 | NUYENS Nick | 68 |
18 | DE WAELE Bert | 71 |
19 | BLAUDZUN Michael | 66 |
20 | THOMAS Geraint | 71 |
22 | STEINHAUSER Tobias | 72 |
23 | POWER Ciarán | 68 |
24 | CLARKE Hilton | 70 |