Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Viviani
1
67 kgEwan
2
69 kgGaviria
3
71 kgKristoff
4
78 kgŠtybar
5
68 kgGerts
6
71 kgBoasson Hagen
7
75 kgGroenewegen
8
70 kgMaes
9
78 kgLawless
10
72 kgSieberg
11
80 kgJones
12
81 kgKluge
13
83 kgBennati
14
71 kgBevin
15
75 kgRicheze
16
68 kgPasqualon
17
75 kgRenshaw
18
74 kgWürtz Schmidt
19
70 kgVon Hoff
20
70 kgDoull
21
71 kgMezgec
22
72 kg
1
67 kgEwan
2
69 kgGaviria
3
71 kgKristoff
4
78 kgŠtybar
5
68 kgGerts
6
71 kgBoasson Hagen
7
75 kgGroenewegen
8
70 kgMaes
9
78 kgLawless
10
72 kgSieberg
11
80 kgJones
12
81 kgKluge
13
83 kgBennati
14
71 kgBevin
15
75 kgRicheze
16
68 kgPasqualon
17
75 kgRenshaw
18
74 kgWürtz Schmidt
19
70 kgVon Hoff
20
70 kgDoull
21
71 kgMezgec
22
72 kg
Weight (KG) →
Result →
83
67
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VIVIANI Elia | 67 |
2 | EWAN Caleb | 69 |
3 | GAVIRIA Fernando | 71 |
4 | KRISTOFF Alexander | 78 |
5 | ŠTYBAR Zdeněk | 68 |
6 | GERTS Floris | 71 |
7 | BOASSON HAGEN Edvald | 75 |
8 | GROENEWEGEN Dylan | 70 |
9 | MAES Nikolas | 78 |
10 | LAWLESS Chris | 72 |
11 | SIEBERG Marcel | 80 |
12 | JONES Brenton | 81 |
13 | KLUGE Roger | 83 |
14 | BENNATI Daniele | 71 |
15 | BEVIN Patrick | 75 |
16 | RICHEZE Maximiliano | 68 |
17 | PASQUALON Andrea | 75 |
18 | RENSHAW Mark | 74 |
19 | WÜRTZ SCHMIDT Mads | 70 |
20 | VON HOFF Steele | 70 |
21 | DOULL Owain | 71 |
22 | MEZGEC Luka | 72 |