Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Hayter
1
70 kgTownsend
2
73 kgAlaphilippe
3
62 kgvan Aert
4
78 kgNizzolo
6
72 kgSerrano
7
65 kgEekhoff
8
75 kgSbaragli
9
74 kgPeters
10
67 kgHonoré
11
68 kgKanter
12
68 kgWoods
13
62 kgShaw
14
63 kgVernon
15
74 kgMeurisse
16
71 kgPaluta
19
65 kgJorgenson
20
69 kgGibson
21
76 kgSwift
22
75 kg
1
70 kgTownsend
2
73 kgAlaphilippe
3
62 kgvan Aert
4
78 kgNizzolo
6
72 kgSerrano
7
65 kgEekhoff
8
75 kgSbaragli
9
74 kgPeters
10
67 kgHonoré
11
68 kgKanter
12
68 kgWoods
13
62 kgShaw
14
63 kgVernon
15
74 kgMeurisse
16
71 kgPaluta
19
65 kgJorgenson
20
69 kgGibson
21
76 kgSwift
22
75 kg
Weight (KG) →
Result →
78
62
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | HAYTER Ethan | 70 |
2 | TOWNSEND Rory | 73 |
3 | ALAPHILIPPE Julian | 62 |
4 | VAN AERT Wout | 78 |
6 | NIZZOLO Giacomo | 72 |
7 | SERRANO Gonzalo | 65 |
8 | EEKHOFF Nils | 75 |
9 | SBARAGLI Kristian | 74 |
10 | PETERS Alex | 67 |
11 | HONORÉ Mikkel Frølich | 68 |
12 | KANTER Max | 68 |
13 | WOODS Michael | 62 |
14 | SHAW James | 63 |
15 | VERNON Ethan | 74 |
16 | MEURISSE Xandro | 71 |
19 | PALUTA Michał | 65 |
20 | JORGENSON Matteo | 69 |
21 | GIBSON Matthew | 76 |
22 | SWIFT Connor | 75 |