Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Strong
1
63 kgPidcock
2
58 kgStewart
3
66 kgBol
4
83 kgFraile
5
72 kgSerrano
7
65 kgAniołkowski
8
68 kgLamperti
9
74 kgVan Rooy
10
70 kgTeuns
11
64 kgPrades
13
63 kgOnley
14
62 kgCharmig
15
66 kgBrown
16
68 kgGroßschartner
17
64 kgZana
18
65 kgMarcellusi
19
62 kgPaasschens
21
75 kgAasvold
22
61 kgTownsend
23
73 kgWatson
24
68 kgSunderland
25
67 kgBarceló
26
65 kg
1
63 kgPidcock
2
58 kgStewart
3
66 kgBol
4
83 kgFraile
5
72 kgSerrano
7
65 kgAniołkowski
8
68 kgLamperti
9
74 kgVan Rooy
10
70 kgTeuns
11
64 kgPrades
13
63 kgOnley
14
62 kgCharmig
15
66 kgBrown
16
68 kgGroßschartner
17
64 kgZana
18
65 kgMarcellusi
19
62 kgPaasschens
21
75 kgAasvold
22
61 kgTownsend
23
73 kgWatson
24
68 kgSunderland
25
67 kgBarceló
26
65 kg
Weight (KG) →
Result →
83
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | STRONG Corbin | 63 |
2 | PIDCOCK Thomas | 58 |
3 | STEWART Jake | 66 |
4 | BOL Cees | 83 |
5 | FRAILE Omar | 72 |
7 | SERRANO Gonzalo | 65 |
8 | ANIOŁKOWSKI Stanisław | 68 |
9 | LAMPERTI Luke | 74 |
10 | VAN ROOY Kenneth | 70 |
11 | TEUNS Dylan | 64 |
13 | PRADES Eduard | 63 |
14 | ONLEY Oscar | 62 |
15 | CHARMIG Anthon | 66 |
16 | BROWN Jim | 68 |
17 | GROßSCHARTNER Felix | 64 |
18 | ZANA Filippo | 65 |
19 | MARCELLUSI Martin | 62 |
21 | PAASSCHENS Mathijs | 75 |
22 | AASVOLD Kristian | 61 |
23 | TOWNSEND Rory | 73 |
24 | WATSON Samuel | 68 |
25 | SUNDERLAND Dylan | 67 |
26 | BARCELÓ Fernando | 65 |