Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Kooij
1
72 kgvan Aert
2
78 kgvan Poppel
3
82 kgBennett
4
73 kgKanter
5
68 kgVernon
6
74 kgStockman
7
67 kgTanfield
8
79.5 kgFredheim
10
72 kgFouché
12
71 kgBomboi
13
72 kgLamperti
14
74 kgKyffin
15
72 kgBevin
16
75 kgPidcock
17
58 kgSerrano
18
65 kgTownsend
19
73 kgRootkin-Gray
20
67 kgvan Emden
21
78 kg
1
72 kgvan Aert
2
78 kgvan Poppel
3
82 kgBennett
4
73 kgKanter
5
68 kgVernon
6
74 kgStockman
7
67 kgTanfield
8
79.5 kgFredheim
10
72 kgFouché
12
71 kgBomboi
13
72 kgLamperti
14
74 kgKyffin
15
72 kgBevin
16
75 kgPidcock
17
58 kgSerrano
18
65 kgTownsend
19
73 kgRootkin-Gray
20
67 kgvan Emden
21
78 kg
Weight (KG) →
Result →
82
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | KOOIJ Olav | 72 |
2 | VAN AERT Wout | 78 |
3 | VAN POPPEL Danny | 82 |
4 | BENNETT Sam | 73 |
5 | KANTER Max | 68 |
6 | VERNON Ethan | 74 |
7 | STOCKMAN Abram | 67 |
8 | TANFIELD Harry | 79.5 |
10 | FREDHEIM Stian | 72 |
12 | FOUCHÉ James | 71 |
13 | BOMBOI Davide | 72 |
14 | LAMPERTI Luke | 74 |
15 | KYFFIN Zeb | 72 |
16 | BEVIN Patrick | 75 |
17 | PIDCOCK Thomas | 58 |
18 | SERRANO Gonzalo | 65 |
19 | TOWNSEND Rory | 73 |
20 | ROOTKIN-GRAY Jack | 67 |
21 | VAN EMDEN Jos | 78 |