Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Kooij
1
72 kgvan Poppel
2
82 kgvan Aert
3
78 kgVernon
4
74 kgKanter
5
68 kgTanfield
6
79.5 kgBennett
7
73 kgFouché
9
71 kgStockman
10
67 kgFredheim
11
72 kgPidcock
12
58 kgSessler
14
58 kgBomboi
15
72 kgTiller
16
84 kgLamperti
18
74 kgTownsend
19
73 kgKyffin
21
72 kgBevin
22
75 kgSerrano
23
65 kgRootkin-Gray
24
67 kgVerona
25
68 kgvan Emden
26
78 kg
1
72 kgvan Poppel
2
82 kgvan Aert
3
78 kgVernon
4
74 kgKanter
5
68 kgTanfield
6
79.5 kgBennett
7
73 kgFouché
9
71 kgStockman
10
67 kgFredheim
11
72 kgPidcock
12
58 kgSessler
14
58 kgBomboi
15
72 kgTiller
16
84 kgLamperti
18
74 kgTownsend
19
73 kgKyffin
21
72 kgBevin
22
75 kgSerrano
23
65 kgRootkin-Gray
24
67 kgVerona
25
68 kgvan Emden
26
78 kg
Weight (KG) →
Result →
84
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | KOOIJ Olav | 72 |
2 | VAN POPPEL Danny | 82 |
3 | VAN AERT Wout | 78 |
4 | VERNON Ethan | 74 |
5 | KANTER Max | 68 |
6 | TANFIELD Harry | 79.5 |
7 | BENNETT Sam | 73 |
9 | FOUCHÉ James | 71 |
10 | STOCKMAN Abram | 67 |
11 | FREDHEIM Stian | 72 |
12 | PIDCOCK Thomas | 58 |
14 | SESSLER Nícolas | 58 |
15 | BOMBOI Davide | 72 |
16 | TILLER Rasmus | 84 |
18 | LAMPERTI Luke | 74 |
19 | TOWNSEND Rory | 73 |
21 | KYFFIN Zeb | 72 |
22 | BEVIN Patrick | 75 |
23 | SERRANO Gonzalo | 65 |
24 | ROOTKIN-GRAY Jack | 67 |
25 | VERONA Carlos | 68 |
26 | VAN EMDEN Jos | 78 |