Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Johansen
1
77 kgMagnier
2
70 kgVernon
3
74 kgPidcock
4
58 kgThornley
5
76 kgAbrahamsen
8
78 kgTurner
9
74 kgTownsend
10
73 kgOrmiston
11
67 kgZambanini
12
62 kgGovekar
13
73 kgHayter
14
70 kgMoscon
16
71 kgStewart
17
66 kgVahtra
18
85 kgWilliams
19
59 kgAlaphilippe
20
62 kgSvrček
21
66 kg
1
77 kgMagnier
2
70 kgVernon
3
74 kgPidcock
4
58 kgThornley
5
76 kgAbrahamsen
8
78 kgTurner
9
74 kgTownsend
10
73 kgOrmiston
11
67 kgZambanini
12
62 kgGovekar
13
73 kgHayter
14
70 kgMoscon
16
71 kgStewart
17
66 kgVahtra
18
85 kgWilliams
19
59 kgAlaphilippe
20
62 kgSvrček
21
66 kg
Weight (KG) →
Result →
85
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSEN Julius | 77 |
2 | MAGNIER Paul | 70 |
3 | VERNON Ethan | 74 |
4 | PIDCOCK Thomas | 58 |
5 | THORNLEY Callum | 76 |
8 | ABRAHAMSEN Jonas | 78 |
9 | TURNER Ben | 74 |
10 | TOWNSEND Rory | 73 |
11 | ORMISTON Callum | 67 |
12 | ZAMBANINI Edoardo | 62 |
13 | GOVEKAR Matevž | 73 |
14 | HAYTER Ethan | 70 |
16 | MOSCON Gianni | 71 |
17 | STEWART Jake | 66 |
18 | VAHTRA Norman | 85 |
19 | WILLIAMS Stephen | 59 |
20 | ALAPHILIPPE Julian | 62 |
21 | SVRČEK Martin | 66 |