Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight - 96
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Gerganov
2
60 kgLagkuti
8
68 kgIgnatenko
9
63 kgMancebo
10
64 kgCasimiro
11
62 kgMestre
13
58 kgPetrov
16
66 kgCardoso
19
56 kgHristov
21
57 kgMaikin
28
68 kgSolomennikov
46
72 kgGyurov
48
75 kgBartko
55
78 kgKüçükbay
71
70 kgMestre
80
65 kgBenčík
81
73 kgBommel
83
75 kgBengsch
94
85 kgGil Martinez
95
60 kgKönig
96
62 kgGaebel
101
68 kgStević
107
66 kg
2
60 kgLagkuti
8
68 kgIgnatenko
9
63 kgMancebo
10
64 kgCasimiro
11
62 kgMestre
13
58 kgPetrov
16
66 kgCardoso
19
56 kgHristov
21
57 kgMaikin
28
68 kgSolomennikov
46
72 kgGyurov
48
75 kgBartko
55
78 kgKüçükbay
71
70 kgMestre
80
65 kgBenčík
81
73 kgBommel
83
75 kgBengsch
94
85 kgGil Martinez
95
60 kgKönig
96
62 kgGaebel
101
68 kgStević
107
66 kg
Weight (KG) →
Result →
85
56
2
107
# | Rider | Weight (KG) |
---|---|---|
2 | GERGANOV Evgeni | 60 |
8 | LAGKUTI Sergiy | 68 |
9 | IGNATENKO Petr | 63 |
10 | MANCEBO Francisco | 64 |
11 | CASIMIRO Henrique | 62 |
13 | MESTRE Ricardo | 58 |
16 | PETROV Daniel Bogomilov | 66 |
19 | CARDOSO André | 56 |
21 | HRISTOV Stefan Koychev | 57 |
28 | MAIKIN Roman | 68 |
46 | SOLOMENNIKOV Andrei | 72 |
48 | GYUROV Spas | 75 |
55 | BARTKO Robert | 78 |
71 | KÜÇÜKBAY Kemal | 70 |
80 | MESTRE Daniel | 65 |
81 | BENČÍK Petr | 73 |
83 | BOMMEL Henning | 75 |
94 | BENGSCH Robert | 85 |
95 | GIL MARTINEZ Tomas Aurelio | 60 |
96 | KÖNIG Leopold | 62 |
101 | GAEBEL Stefan | 68 |
107 | STEVIĆ Ivan | 66 |