Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
König
2
62 kgMestre
4
65 kgGerganov
6
60 kgBenčík
7
73 kgMancebo
10
64 kgBengsch
18
85 kgIgnatenko
21
63 kgCasimiro
27
62 kgCardoso
29
56 kgMestre
30
58 kgHristov
34
57 kgPetrov
35
66 kgSolomennikov
37
72 kgLagkuti
47
68 kgStević
48
66 kgBommel
49
75 kgGaebel
52
68 kgMaikin
55
68 kgGil Martinez
68
60 kgBartko
69
78 kgGyurov
72
75 kg
2
62 kgMestre
4
65 kgGerganov
6
60 kgBenčík
7
73 kgMancebo
10
64 kgBengsch
18
85 kgIgnatenko
21
63 kgCasimiro
27
62 kgCardoso
29
56 kgMestre
30
58 kgHristov
34
57 kgPetrov
35
66 kgSolomennikov
37
72 kgLagkuti
47
68 kgStević
48
66 kgBommel
49
75 kgGaebel
52
68 kgMaikin
55
68 kgGil Martinez
68
60 kgBartko
69
78 kgGyurov
72
75 kg
Weight (KG) →
Result →
85
56
2
72
# | Rider | Weight (KG) |
---|---|---|
2 | KÖNIG Leopold | 62 |
4 | MESTRE Daniel | 65 |
6 | GERGANOV Evgeni | 60 |
7 | BENČÍK Petr | 73 |
10 | MANCEBO Francisco | 64 |
18 | BENGSCH Robert | 85 |
21 | IGNATENKO Petr | 63 |
27 | CASIMIRO Henrique | 62 |
29 | CARDOSO André | 56 |
30 | MESTRE Ricardo | 58 |
34 | HRISTOV Stefan Koychev | 57 |
35 | PETROV Daniel Bogomilov | 66 |
37 | SOLOMENNIKOV Andrei | 72 |
47 | LAGKUTI Sergiy | 68 |
48 | STEVIĆ Ivan | 66 |
49 | BOMMEL Henning | 75 |
52 | GAEBEL Stefan | 68 |
55 | MAIKIN Roman | 68 |
68 | GIL MARTINEZ Tomas Aurelio | 60 |
69 | BARTKO Robert | 78 |
72 | GYUROV Spas | 75 |