Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
König
1
62 kgStević
4
66 kgMestre
7
65 kgGaebel
8
68 kgGyurov
10
75 kgHristov
26
57 kgCardoso
27
56 kgIgnatenko
33
63 kgMancebo
35
64 kgPetrov
38
66 kgCasimiro
43
62 kgLagkuti
44
68 kgGerganov
45
60 kgBartko
51
78 kgBengsch
56
85 kgGil Martinez
60
60 kgSolomennikov
69
72 kgBenčík
72
73 kgMestre
74
58 kgMaikin
78
68 kgBommel
79
75 kg
1
62 kgStević
4
66 kgMestre
7
65 kgGaebel
8
68 kgGyurov
10
75 kgHristov
26
57 kgCardoso
27
56 kgIgnatenko
33
63 kgMancebo
35
64 kgPetrov
38
66 kgCasimiro
43
62 kgLagkuti
44
68 kgGerganov
45
60 kgBartko
51
78 kgBengsch
56
85 kgGil Martinez
60
60 kgSolomennikov
69
72 kgBenčík
72
73 kgMestre
74
58 kgMaikin
78
68 kgBommel
79
75 kg
Weight (KG) →
Result →
85
56
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | KÖNIG Leopold | 62 |
4 | STEVIĆ Ivan | 66 |
7 | MESTRE Daniel | 65 |
8 | GAEBEL Stefan | 68 |
10 | GYUROV Spas | 75 |
26 | HRISTOV Stefan Koychev | 57 |
27 | CARDOSO André | 56 |
33 | IGNATENKO Petr | 63 |
35 | MANCEBO Francisco | 64 |
38 | PETROV Daniel Bogomilov | 66 |
43 | CASIMIRO Henrique | 62 |
44 | LAGKUTI Sergiy | 68 |
45 | GERGANOV Evgeni | 60 |
51 | BARTKO Robert | 78 |
56 | BENGSCH Robert | 85 |
60 | GIL MARTINEZ Tomas Aurelio | 60 |
69 | SOLOMENNIKOV Andrei | 72 |
72 | BENČÍK Petr | 73 |
74 | MESTRE Ricardo | 58 |
78 | MAIKIN Roman | 68 |
79 | BOMMEL Henning | 75 |