Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 98
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Bengsch
1
85 kgCardoso
9
56 kgMestre
10
58 kgMancebo
12
64 kgLagkuti
21
68 kgMaikin
23
68 kgBommel
24
75 kgBartko
25
78 kgBenčík
29
73 kgStević
41
66 kgPetrov
44
66 kgGaebel
46
68 kgMestre
48
65 kgGyurov
49
75 kgCasimiro
50
62 kgHristov
55
57 kgIgnatenko
57
63 kgKönig
64
62 kgGil Martinez
65
60 kgSolomennikov
66
72 kgGerganov
69
60 kg
1
85 kgCardoso
9
56 kgMestre
10
58 kgMancebo
12
64 kgLagkuti
21
68 kgMaikin
23
68 kgBommel
24
75 kgBartko
25
78 kgBenčík
29
73 kgStević
41
66 kgPetrov
44
66 kgGaebel
46
68 kgMestre
48
65 kgGyurov
49
75 kgCasimiro
50
62 kgHristov
55
57 kgIgnatenko
57
63 kgKönig
64
62 kgGil Martinez
65
60 kgSolomennikov
66
72 kgGerganov
69
60 kg
Weight (KG) →
Result →
85
56
1
69
# | Rider | Weight (KG) |
---|---|---|
1 | BENGSCH Robert | 85 |
9 | CARDOSO André | 56 |
10 | MESTRE Ricardo | 58 |
12 | MANCEBO Francisco | 64 |
21 | LAGKUTI Sergiy | 68 |
23 | MAIKIN Roman | 68 |
24 | BOMMEL Henning | 75 |
25 | BARTKO Robert | 78 |
29 | BENČÍK Petr | 73 |
41 | STEVIĆ Ivan | 66 |
44 | PETROV Daniel Bogomilov | 66 |
46 | GAEBEL Stefan | 68 |
48 | MESTRE Daniel | 65 |
49 | GYUROV Spas | 75 |
50 | CASIMIRO Henrique | 62 |
55 | HRISTOV Stefan Koychev | 57 |
57 | IGNATENKO Petr | 63 |
64 | KÖNIG Leopold | 62 |
65 | GIL MARTINEZ Tomas Aurelio | 60 |
66 | SOLOMENNIKOV Andrei | 72 |
69 | GERGANOV Evgeni | 60 |