Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Bengsch
3
85 kgHristov
7
57 kgGerganov
8
60 kgPetrov
9
66 kgCardoso
15
56 kgBartko
16
78 kgMestre
20
58 kgStević
21
66 kgGil Martinez
23
60 kgMancebo
24
64 kgCasimiro
26
62 kgGaebel
33
68 kgIgnatenko
36
63 kgMaikin
37
68 kgMestre
46
65 kgGyurov
48
75 kgLagkuti
49
68 kgSolomennikov
52
72 kgBenčík
53
73 kgBommel
67
75 kgKönig
70
62 kg
3
85 kgHristov
7
57 kgGerganov
8
60 kgPetrov
9
66 kgCardoso
15
56 kgBartko
16
78 kgMestre
20
58 kgStević
21
66 kgGil Martinez
23
60 kgMancebo
24
64 kgCasimiro
26
62 kgGaebel
33
68 kgIgnatenko
36
63 kgMaikin
37
68 kgMestre
46
65 kgGyurov
48
75 kgLagkuti
49
68 kgSolomennikov
52
72 kgBenčík
53
73 kgBommel
67
75 kgKönig
70
62 kg
Weight (KG) →
Result →
85
56
3
70
# | Rider | Weight (KG) |
---|---|---|
3 | BENGSCH Robert | 85 |
7 | HRISTOV Stefan Koychev | 57 |
8 | GERGANOV Evgeni | 60 |
9 | PETROV Daniel Bogomilov | 66 |
15 | CARDOSO André | 56 |
16 | BARTKO Robert | 78 |
20 | MESTRE Ricardo | 58 |
21 | STEVIĆ Ivan | 66 |
23 | GIL MARTINEZ Tomas Aurelio | 60 |
24 | MANCEBO Francisco | 64 |
26 | CASIMIRO Henrique | 62 |
33 | GAEBEL Stefan | 68 |
36 | IGNATENKO Petr | 63 |
37 | MAIKIN Roman | 68 |
46 | MESTRE Daniel | 65 |
48 | GYUROV Spas | 75 |
49 | LAGKUTI Sergiy | 68 |
52 | SOLOMENNIKOV Andrei | 72 |
53 | BENČÍK Petr | 73 |
67 | BOMMEL Henning | 75 |
70 | KÖNIG Leopold | 62 |