Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.3 * weight - 115
This means that on average for every extra kilogram weight a rider loses 2.3 positions in the result.
Gerganov
2
60 kgIgnatenko
3
63 kgCardoso
4
56 kgMestre
5
58 kgMancebo
6
64 kgCasimiro
14
62 kgHristov
21
57 kgKönig
24
62 kgLagkuti
35
68 kgMestre
39
65 kgPetrov
42
66 kgSolomennikov
44
72 kgBenčík
45
73 kgMaikin
46
68 kgGil Martinez
50
60 kgGyurov
55
75 kgBengsch
59
85 kgStević
60
66 kgBartko
64
78 kgBommel
66
75 kgGaebel
73
68 kg
2
60 kgIgnatenko
3
63 kgCardoso
4
56 kgMestre
5
58 kgMancebo
6
64 kgCasimiro
14
62 kgHristov
21
57 kgKönig
24
62 kgLagkuti
35
68 kgMestre
39
65 kgPetrov
42
66 kgSolomennikov
44
72 kgBenčík
45
73 kgMaikin
46
68 kgGil Martinez
50
60 kgGyurov
55
75 kgBengsch
59
85 kgStević
60
66 kgBartko
64
78 kgBommel
66
75 kgGaebel
73
68 kg
Weight (KG) →
Result →
85
56
2
73
# | Rider | Weight (KG) |
---|---|---|
2 | GERGANOV Evgeni | 60 |
3 | IGNATENKO Petr | 63 |
4 | CARDOSO André | 56 |
5 | MESTRE Ricardo | 58 |
6 | MANCEBO Francisco | 64 |
14 | CASIMIRO Henrique | 62 |
21 | HRISTOV Stefan Koychev | 57 |
24 | KÖNIG Leopold | 62 |
35 | LAGKUTI Sergiy | 68 |
39 | MESTRE Daniel | 65 |
42 | PETROV Daniel Bogomilov | 66 |
44 | SOLOMENNIKOV Andrei | 72 |
45 | BENČÍK Petr | 73 |
46 | MAIKIN Roman | 68 |
50 | GIL MARTINEZ Tomas Aurelio | 60 |
55 | GYUROV Spas | 75 |
59 | BENGSCH Robert | 85 |
60 | STEVIĆ Ivan | 66 |
64 | BARTKO Robert | 78 |
66 | BOMMEL Henning | 75 |
73 | GAEBEL Stefan | 68 |