Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 86
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Gerganov
1
60 kgHristov
6
57 kgCasimiro
7
62 kgMestre
8
65 kgStević
13
66 kgPetrov
14
66 kgMancebo
17
64 kgCardoso
19
56 kgMestre
22
58 kgIgnatenko
34
63 kgBengsch
45
85 kgGaebel
47
68 kgLagkuti
51
68 kgSolomennikov
59
72 kgMaikin
60
68 kgGyurov
62
75 kgBommel
64
75 kgBartko
71
78 kgBenčík
72
73 kgGil Martinez
73
60 kgKönig
74
62 kg
1
60 kgHristov
6
57 kgCasimiro
7
62 kgMestre
8
65 kgStević
13
66 kgPetrov
14
66 kgMancebo
17
64 kgCardoso
19
56 kgMestre
22
58 kgIgnatenko
34
63 kgBengsch
45
85 kgGaebel
47
68 kgLagkuti
51
68 kgSolomennikov
59
72 kgMaikin
60
68 kgGyurov
62
75 kgBommel
64
75 kgBartko
71
78 kgBenčík
72
73 kgGil Martinez
73
60 kgKönig
74
62 kg
Weight (KG) →
Result →
85
56
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | GERGANOV Evgeni | 60 |
6 | HRISTOV Stefan Koychev | 57 |
7 | CASIMIRO Henrique | 62 |
8 | MESTRE Daniel | 65 |
13 | STEVIĆ Ivan | 66 |
14 | PETROV Daniel Bogomilov | 66 |
17 | MANCEBO Francisco | 64 |
19 | CARDOSO André | 56 |
22 | MESTRE Ricardo | 58 |
34 | IGNATENKO Petr | 63 |
45 | BENGSCH Robert | 85 |
47 | GAEBEL Stefan | 68 |
51 | LAGKUTI Sergiy | 68 |
59 | SOLOMENNIKOV Andrei | 72 |
60 | MAIKIN Roman | 68 |
62 | GYUROV Spas | 75 |
64 | BOMMEL Henning | 75 |
71 | BARTKO Robert | 78 |
72 | BENČÍK Petr | 73 |
73 | GIL MARTINEZ Tomas Aurelio | 60 |
74 | KÖNIG Leopold | 62 |