Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Ignatenko
1
63 kgLagkuti
2
68 kgGyurov
21
75 kgMancebo
25
64 kgCardoso
27
56 kgGerganov
29
60 kgMestre
30
58 kgHristov
37
57 kgBartko
39
78 kgMestre
40
65 kgPetrov
41
66 kgCasimiro
43
62 kgSolomennikov
44
72 kgStević
47
66 kgKönig
53
62 kgGaebel
55
68 kgBommel
56
75 kgBengsch
65
85 kgMaikin
67
68 kgGil Martinez
71
60 kgBenčík
76
73 kg
1
63 kgLagkuti
2
68 kgGyurov
21
75 kgMancebo
25
64 kgCardoso
27
56 kgGerganov
29
60 kgMestre
30
58 kgHristov
37
57 kgBartko
39
78 kgMestre
40
65 kgPetrov
41
66 kgCasimiro
43
62 kgSolomennikov
44
72 kgStević
47
66 kgKönig
53
62 kgGaebel
55
68 kgBommel
56
75 kgBengsch
65
85 kgMaikin
67
68 kgGil Martinez
71
60 kgBenčík
76
73 kg
Weight (KG) →
Result →
85
56
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | IGNATENKO Petr | 63 |
2 | LAGKUTI Sergiy | 68 |
21 | GYUROV Spas | 75 |
25 | MANCEBO Francisco | 64 |
27 | CARDOSO André | 56 |
29 | GERGANOV Evgeni | 60 |
30 | MESTRE Ricardo | 58 |
37 | HRISTOV Stefan Koychev | 57 |
39 | BARTKO Robert | 78 |
40 | MESTRE Daniel | 65 |
41 | PETROV Daniel Bogomilov | 66 |
43 | CASIMIRO Henrique | 62 |
44 | SOLOMENNIKOV Andrei | 72 |
47 | STEVIĆ Ivan | 66 |
53 | KÖNIG Leopold | 62 |
55 | GAEBEL Stefan | 68 |
56 | BOMMEL Henning | 75 |
65 | BENGSCH Robert | 85 |
67 | MAIKIN Roman | 68 |
71 | GIL MARTINEZ Tomas Aurelio | 60 |
76 | BENČÍK Petr | 73 |