Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 84
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Boev
3
74 kgArndt
5
77.5 kgKamyshev
8
67 kgKuznetsov
9
70 kgMalaguti
11
67 kgAyazbayev
21
75 kgGerganov
23
60 kgOelerich
25
70 kgHristov
28
57 kgCholakov
29
66 kgSapa
34
82 kgGaebel
35
68 kgGyurov
36
75 kgBommel
40
75 kgVasylyuk
41
65 kgJovanović
51
60 kgStalnov
55
63 kgKogut
58
73 kgKnaup
62
61 kgLagkuti
64
68 kgSchiewer
79
70 kg
3
74 kgArndt
5
77.5 kgKamyshev
8
67 kgKuznetsov
9
70 kgMalaguti
11
67 kgAyazbayev
21
75 kgGerganov
23
60 kgOelerich
25
70 kgHristov
28
57 kgCholakov
29
66 kgSapa
34
82 kgGaebel
35
68 kgGyurov
36
75 kgBommel
40
75 kgVasylyuk
41
65 kgJovanović
51
60 kgStalnov
55
63 kgKogut
58
73 kgKnaup
62
61 kgLagkuti
64
68 kgSchiewer
79
70 kg
Weight (KG) →
Result →
82
57
3
79
# | Rider | Weight (KG) |
---|---|---|
3 | BOEV Igor | 74 |
5 | ARNDT Nikias | 77.5 |
8 | KAMYSHEV Arman | 67 |
9 | KUZNETSOV Viacheslav | 70 |
11 | MALAGUTI Alessandro | 67 |
21 | AYAZBAYEV Maxat | 75 |
23 | GERGANOV Evgeni | 60 |
25 | OELERICH Jan | 70 |
28 | HRISTOV Stefan Koychev | 57 |
29 | CHOLAKOV Stanimir | 66 |
34 | SAPA Marcin | 82 |
35 | GAEBEL Stefan | 68 |
36 | GYUROV Spas | 75 |
40 | BOMMEL Henning | 75 |
41 | VASYLYUK Andriy | 65 |
51 | JOVANOVIĆ Nebojša | 60 |
55 | STALNOV Nikita | 63 |
58 | KOGUT Volodymyr | 73 |
62 | KNAUP Tobias | 61 |
64 | LAGKUTI Sergiy | 68 |
79 | SCHIEWER Franz | 70 |