Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Kuznetsov
1
70 kgHristov
7
57 kgSapa
8
82 kgAyazbayev
9
75 kgGerganov
10
60 kgVasylyuk
12
65 kgKamyshev
18
67 kgBommel
19
75 kgOelerich
20
70 kgGyurov
23
75 kgMalaguti
28
67 kgGaebel
35
68 kgCholakov
43
66 kgArndt
45
77.5 kgKnaup
46
61 kgLagkuti
47
68 kgKogut
53
73 kgBoev
61
74 kgStalnov
65
63 kg
1
70 kgHristov
7
57 kgSapa
8
82 kgAyazbayev
9
75 kgGerganov
10
60 kgVasylyuk
12
65 kgKamyshev
18
67 kgBommel
19
75 kgOelerich
20
70 kgGyurov
23
75 kgMalaguti
28
67 kgGaebel
35
68 kgCholakov
43
66 kgArndt
45
77.5 kgKnaup
46
61 kgLagkuti
47
68 kgKogut
53
73 kgBoev
61
74 kgStalnov
65
63 kg
Weight (KG) →
Result →
82
57
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | KUZNETSOV Viacheslav | 70 |
7 | HRISTOV Stefan Koychev | 57 |
8 | SAPA Marcin | 82 |
9 | AYAZBAYEV Maxat | 75 |
10 | GERGANOV Evgeni | 60 |
12 | VASYLYUK Andriy | 65 |
18 | KAMYSHEV Arman | 67 |
19 | BOMMEL Henning | 75 |
20 | OELERICH Jan | 70 |
23 | GYUROV Spas | 75 |
28 | MALAGUTI Alessandro | 67 |
35 | GAEBEL Stefan | 68 |
43 | CHOLAKOV Stanimir | 66 |
45 | ARNDT Nikias | 77.5 |
46 | KNAUP Tobias | 61 |
47 | LAGKUTI Sergiy | 68 |
53 | KOGUT Volodymyr | 73 |
61 | BOEV Igor | 74 |
65 | STALNOV Nikita | 63 |