Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Baroni
1
63 kgMurguialday
2
57 kgHollyman
3
59 kgLópez de Abetxuko
4
74 kgKubiš
6
70 kgStojnić
7
73 kgJohnston
9
55 kgSerrano
12
60 kgBrussenskiy
14
64 kgFedorov
15
80 kgChzhan
17
71 kgWood
20
67 kgFoulon
21
73 kgAleksandrov
23
62 kgBahr
24
63 kgĐurić
25
79 kgPongiluppi
26
80 kgKolev
28
64 kgLéonien
29
58 kgJolidon
36
71 kgBechkov
40
67 kgDyankov
41
61 kg
1
63 kgMurguialday
2
57 kgHollyman
3
59 kgLópez de Abetxuko
4
74 kgKubiš
6
70 kgStojnić
7
73 kgJohnston
9
55 kgSerrano
12
60 kgBrussenskiy
14
64 kgFedorov
15
80 kgChzhan
17
71 kgWood
20
67 kgFoulon
21
73 kgAleksandrov
23
62 kgBahr
24
63 kgĐurić
25
79 kgPongiluppi
26
80 kgKolev
28
64 kgLéonien
29
58 kgJolidon
36
71 kgBechkov
40
67 kgDyankov
41
61 kg
Weight (KG) →
Result →
80
55
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | BARONI Alessandro | 63 |
2 | MURGUIALDAY Jokin | 57 |
3 | HOLLYMAN Mason | 59 |
4 | LÓPEZ DE ABETXUKO Andoni | 74 |
6 | KUBIŠ Lukáš | 70 |
7 | STOJNIĆ Veljko | 73 |
9 | JOHNSTON Calum | 55 |
12 | SERRANO Javier | 60 |
14 | BRUSSENSKIY Gleb | 64 |
15 | FEDOROV Yevgeniy | 80 |
17 | CHZHAN Igor | 71 |
20 | WOOD Reece | 67 |
21 | FOULON Dorian | 73 |
23 | ALEKSANDROV Yasen | 62 |
24 | BAHR Christian | 63 |
25 | ĐURIĆ Đorđe | 79 |
26 | PONGILUPPI Matteo | 80 |
28 | KOLEV Yoan | 64 |
29 | LÉONIEN Alexandre | 58 |
36 | JOLIDON Cédric | 71 |
40 | BECHKOV Aleks | 67 |
41 | DYANKOV Nikolay | 61 |