Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 71
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Shpilevsky
1
78 kgGavazzi
3
70 kgBenfatto
4
71 kgBanaszek
6
79 kgSchnaidt
7
70 kgForke
8
78 kgCantwell
9
69 kgWippert
11
75 kgBernas
12
77 kgButs
13
68 kgScartezzini
14
63 kgKadlec
16
70 kgOckeloen
18
66 kgWang
19
70 kgGaleyev
20
68 kgBrammeier
21
72 kgTorres
23
70 kgStachowiak
25
62 kg
1
78 kgGavazzi
3
70 kgBenfatto
4
71 kgBanaszek
6
79 kgSchnaidt
7
70 kgForke
8
78 kgCantwell
9
69 kgWippert
11
75 kgBernas
12
77 kgButs
13
68 kgScartezzini
14
63 kgKadlec
16
70 kgOckeloen
18
66 kgWang
19
70 kgGaleyev
20
68 kgBrammeier
21
72 kgTorres
23
70 kgStachowiak
25
62 kg
Weight (KG) →
Result →
79
62
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | SHPILEVSKY Boris | 78 |
3 | GAVAZZI Mattia | 70 |
4 | BENFATTO Marco | 71 |
6 | BANASZEK Adrian | 79 |
7 | SCHNAIDT Fabian | 70 |
8 | FORKE Sebastian | 78 |
9 | CANTWELL Jonathan | 69 |
11 | WIPPERT Wouter | 75 |
12 | BERNAS Paweł | 77 |
13 | BUTS Vitaliy | 68 |
14 | SCARTEZZINI Michele | 63 |
16 | KADLEC Milan | 70 |
18 | OCKELOEN Jasper | 66 |
19 | WANG Meiyin | 70 |
20 | GALEYEV Vadim | 68 |
21 | BRAMMEIER Matt | 72 |
23 | TORRES Albert | 70 |
25 | STACHOWIAK Adam | 62 |