Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Reguigui
1
69 kgBenfatto
2
71 kgStrokau
3
74 kgGuardini
5
66 kgRivera
6
56 kgMccormick
8
72.5 kgNeves
11
61 kgGibson
12
76 kgMarini
13
72 kgMaikin
15
68 kgPeñalver
17
67 kgSainbayar
18
60 kgSamoilau
19
77 kgMeijers
20
68 kgOvechkin
22
61 kgPessot
24
75 kgVorganov
25
65 kgBjerkestrand Haugsvær
27
75 kg
1
69 kgBenfatto
2
71 kgStrokau
3
74 kgGuardini
5
66 kgRivera
6
56 kgMccormick
8
72.5 kgNeves
11
61 kgGibson
12
76 kgMarini
13
72 kgMaikin
15
68 kgPeñalver
17
67 kgSainbayar
18
60 kgSamoilau
19
77 kgMeijers
20
68 kgOvechkin
22
61 kgPessot
24
75 kgVorganov
25
65 kgBjerkestrand Haugsvær
27
75 kg
Weight (KG) →
Result →
77
56
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | REGUIGUI Youcef | 69 |
2 | BENFATTO Marco | 71 |
3 | STROKAU Vasili | 74 |
5 | GUARDINI Andrea | 66 |
6 | RIVERA Kevin | 56 |
8 | MCCORMICK Hayden | 72.5 |
11 | NEVES José | 61 |
12 | GIBSON Matthew | 76 |
13 | MARINI Nicolas | 72 |
15 | MAIKIN Roman | 68 |
17 | PEÑALVER Manuel | 67 |
18 | SAINBAYAR Jambaljamts | 60 |
19 | SAMOILAU Branislau | 77 |
20 | MEIJERS Jeroen | 68 |
22 | OVECHKIN Artem | 61 |
24 | PESSOT Alessandro | 75 |
25 | VORGANOV Eduard | 65 |
27 | BJERKESTRAND HAUGSVÆR Sindre | 75 |