Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 78
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Bernas
3
77 kgGradek
5
83 kgBrammeier
6
72 kgShpilevsky
8
78 kgWang
9
70 kgButs
13
68 kgBenfatto
15
71 kgGaleyev
19
68 kgKadlec
20
70 kgBizhigitov
21
76 kgClarke
22
81 kgSimón
24
64 kgSchnaidt
25
70 kgHoller
26
58 kgEibegger
29
68 kgDi Battista
30
68 kgLagkuti
31
68 kgAnderson
35
68 kgJanorschke
36
78 kgScartezzini
38
63 kg
3
77 kgGradek
5
83 kgBrammeier
6
72 kgShpilevsky
8
78 kgWang
9
70 kgButs
13
68 kgBenfatto
15
71 kgGaleyev
19
68 kgKadlec
20
70 kgBizhigitov
21
76 kgClarke
22
81 kgSimón
24
64 kgSchnaidt
25
70 kgHoller
26
58 kgEibegger
29
68 kgDi Battista
30
68 kgLagkuti
31
68 kgAnderson
35
68 kgJanorschke
36
78 kgScartezzini
38
63 kg
Weight (KG) →
Result →
83
58
3
38
# | Rider | Weight (KG) |
---|---|---|
3 | BERNAS Paweł | 77 |
5 | GRADEK Kamil | 83 |
6 | BRAMMEIER Matt | 72 |
8 | SHPILEVSKY Boris | 78 |
9 | WANG Meiyin | 70 |
13 | BUTS Vitaliy | 68 |
15 | BENFATTO Marco | 71 |
19 | GALEYEV Vadim | 68 |
20 | KADLEC Milan | 70 |
21 | BIZHIGITOV Zhandos | 76 |
22 | CLARKE Will | 81 |
24 | SIMÓN Jordi | 64 |
25 | SCHNAIDT Fabian | 70 |
26 | HOLLER Nikodemus | 58 |
29 | EIBEGGER Markus | 68 |
30 | DI BATTISTA Antonio | 68 |
31 | LAGKUTI Sergiy | 68 |
35 | ANDERSON Jack | 68 |
36 | JANORSCHKE Grischa | 78 |
38 | SCARTEZZINI Michele | 63 |