Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 109
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Shpilevsky
1
78 kgGradek
2
83 kgButs
4
68 kgBernas
7
77 kgBenfatto
8
71 kgBrammeier
9
72 kgBizhigitov
12
76 kgGaleyev
13
68 kgJanorschke
14
78 kgWang
15
70 kgSimón
21
64 kgSchumacher
22
71 kgKadlec
24
70 kgClarke
26
81 kgSchnaidt
28
70 kgHoller
29
58 kgScartezzini
30
63 kgEibegger
32
68 kgDi Battista
33
68 kgLagkuti
34
68 kgAnderson
38
68 kgOckeloen
40
66 kgStachowiak
41
62 kg
1
78 kgGradek
2
83 kgButs
4
68 kgBernas
7
77 kgBenfatto
8
71 kgBrammeier
9
72 kgBizhigitov
12
76 kgGaleyev
13
68 kgJanorschke
14
78 kgWang
15
70 kgSimón
21
64 kgSchumacher
22
71 kgKadlec
24
70 kgClarke
26
81 kgSchnaidt
28
70 kgHoller
29
58 kgScartezzini
30
63 kgEibegger
32
68 kgDi Battista
33
68 kgLagkuti
34
68 kgAnderson
38
68 kgOckeloen
40
66 kgStachowiak
41
62 kg
Weight (KG) →
Result →
83
58
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | SHPILEVSKY Boris | 78 |
2 | GRADEK Kamil | 83 |
4 | BUTS Vitaliy | 68 |
7 | BERNAS Paweł | 77 |
8 | BENFATTO Marco | 71 |
9 | BRAMMEIER Matt | 72 |
12 | BIZHIGITOV Zhandos | 76 |
13 | GALEYEV Vadim | 68 |
14 | JANORSCHKE Grischa | 78 |
15 | WANG Meiyin | 70 |
21 | SIMÓN Jordi | 64 |
22 | SCHUMACHER Stefan | 71 |
24 | KADLEC Milan | 70 |
26 | CLARKE Will | 81 |
28 | SCHNAIDT Fabian | 70 |
29 | HOLLER Nikodemus | 58 |
30 | SCARTEZZINI Michele | 63 |
32 | EIBEGGER Markus | 68 |
33 | DI BATTISTA Antonio | 68 |
34 | LAGKUTI Sergiy | 68 |
38 | ANDERSON Jack | 68 |
40 | OCKELOEN Jasper | 66 |
41 | STACHOWIAK Adam | 62 |