Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Benfatto
1
71 kgMarini
2
72 kgBogdanovičs
3
68 kgWang
6
70 kgDe Marchi
8
63 kgBani
9
72 kgNikitin
11
61 kgLunardon
12
77 kgVingegaard
13
58 kgBazhkou
15
65 kgColli
18
73 kgLiepiņš
19
67 kgStalnov
22
63 kgVasilyev
24
70 kgMartins
27
70 kgBēcis
30
82 kgHoller
31
58 kgStacchiotti
32
70 kgTsoy
33
73 kg
1
71 kgMarini
2
72 kgBogdanovičs
3
68 kgWang
6
70 kgDe Marchi
8
63 kgBani
9
72 kgNikitin
11
61 kgLunardon
12
77 kgVingegaard
13
58 kgBazhkou
15
65 kgColli
18
73 kgLiepiņš
19
67 kgStalnov
22
63 kgVasilyev
24
70 kgMartins
27
70 kgBēcis
30
82 kgHoller
31
58 kgStacchiotti
32
70 kgTsoy
33
73 kg
Weight (KG) →
Result →
82
58
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | BENFATTO Marco | 71 |
2 | MARINI Nicolas | 72 |
3 | BOGDANOVIČS Māris | 68 |
6 | WANG Meiyin | 70 |
8 | DE MARCHI Mattia | 63 |
9 | BANI Eugenio | 72 |
11 | NIKITIN Matvey | 61 |
12 | LUNARDON Paolo | 77 |
13 | VINGEGAARD Jonas | 58 |
15 | BAZHKOU Stanislau | 65 |
18 | COLLI Daniele | 73 |
19 | LIEPIŅŠ Emīls | 67 |
22 | STALNOV Nikita | 63 |
24 | VASILYEV Maksym | 70 |
27 | MARTINS Uri | 70 |
30 | BĒCIS Armands | 82 |
31 | HOLLER Nikodemus | 58 |
32 | STACCHIOTTI Riccardo | 70 |
33 | TSOY Vladimir | 73 |