Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Benfatto
1
71 kgBogdanovičs
2
68 kgWang
4
70 kgMarini
7
72 kgDe Marchi
8
63 kgLunardon
10
77 kgVingegaard
11
58 kgNikitin
15
61 kgBani
16
72 kgColli
17
73 kgLiepiņš
18
67 kgStalnov
20
63 kgMartins
24
70 kgVasilyev
26
70 kgBēcis
28
82 kgHoller
29
58 kgStacchiotti
30
70 kgTsoy
31
73 kgBazhkou
32
65 kg
1
71 kgBogdanovičs
2
68 kgWang
4
70 kgMarini
7
72 kgDe Marchi
8
63 kgLunardon
10
77 kgVingegaard
11
58 kgNikitin
15
61 kgBani
16
72 kgColli
17
73 kgLiepiņš
18
67 kgStalnov
20
63 kgMartins
24
70 kgVasilyev
26
70 kgBēcis
28
82 kgHoller
29
58 kgStacchiotti
30
70 kgTsoy
31
73 kgBazhkou
32
65 kg
Weight (KG) →
Result →
82
58
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | BENFATTO Marco | 71 |
2 | BOGDANOVIČS Māris | 68 |
4 | WANG Meiyin | 70 |
7 | MARINI Nicolas | 72 |
8 | DE MARCHI Mattia | 63 |
10 | LUNARDON Paolo | 77 |
11 | VINGEGAARD Jonas | 58 |
15 | NIKITIN Matvey | 61 |
16 | BANI Eugenio | 72 |
17 | COLLI Daniele | 73 |
18 | LIEPIŅŠ Emīls | 67 |
20 | STALNOV Nikita | 63 |
24 | MARTINS Uri | 70 |
26 | VASILYEV Maksym | 70 |
28 | BĒCIS Armands | 82 |
29 | HOLLER Nikodemus | 58 |
30 | STACCHIOTTI Riccardo | 70 |
31 | TSOY Vladimir | 73 |
32 | BAZHKOU Stanislau | 65 |