Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 70
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Teutenberg
1
64 kgWild
2
75 kgGilmore
3
56 kgBecker
4
64 kgCheatley
12
64 kgSaifutdinova
14
57 kgLiu
15
52 kgBeveridge
16
55 kgFournier
28
60 kgSlappendel
29
67 kgvan Dijk
30
71 kgWong Wan
31
54 kgLuo
39
68 kgCanuel
41
51 kgMin
49
56 kgMarche
57
58 kgPavlukhina
71
68 kgHosking
73
60 kgSandig
76
62 kgArndt
79
59 kgKasper
81
59 kgVisser
86
59 kg
1
64 kgWild
2
75 kgGilmore
3
56 kgBecker
4
64 kgCheatley
12
64 kgSaifutdinova
14
57 kgLiu
15
52 kgBeveridge
16
55 kgFournier
28
60 kgSlappendel
29
67 kgvan Dijk
30
71 kgWong Wan
31
54 kgLuo
39
68 kgCanuel
41
51 kgMin
49
56 kgMarche
57
58 kgPavlukhina
71
68 kgHosking
73
60 kgSandig
76
62 kgArndt
79
59 kgKasper
81
59 kgVisser
86
59 kg
Weight (KG) →
Result →
75
51
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | TEUTENBERG Ina-Yoko | 64 |
2 | WILD Kirsten | 75 |
3 | GILMORE Rochelle | 56 |
4 | BECKER Charlotte | 64 |
12 | CHEATLEY Catherine | 64 |
14 | SAIFUTDINOVA Natalya | 57 |
15 | LIU Xin | 52 |
16 | BEVERIDGE Julie | 55 |
28 | FOURNIER Roxane | 60 |
29 | SLAPPENDEL Iris | 67 |
30 | VAN DIJK Ellen | 71 |
31 | WONG WAN Yiu | 54 |
39 | LUO Xiao Ling | 68 |
41 | CANUEL Karol-Ann | 51 |
49 | MIN Gao | 56 |
57 | MARCHE Shara | 58 |
71 | PAVLUKHINA Olena | 68 |
73 | HOSKING Chloe | 60 |
76 | SANDIG Madeleine | 62 |
79 | ARNDT Judith | 59 |
81 | KASPER Romy | 59 |
86 | VISSER Adrie | 59 |