Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Teutenberg
1
64 kgWild
2
75 kgGilmore
4
56 kgCheatley
10
64 kgSaifutdinova
12
57 kgLiu
16
52 kgBeveridge
17
55 kgLuo
19
68 kgWong Wan
28
54 kgFournier
30
60 kgBecker
31
64 kgSlappendel
33
67 kgvan Dijk
36
71 kgCanuel
38
51 kgArndt
39
59 kgVisser
40
59 kgHosking
45
60 kgMin
47
56 kgKasper
48
59 kgSandig
58
62 kgMarche
59
58 kgPavlukhina
67
68 kg
1
64 kgWild
2
75 kgGilmore
4
56 kgCheatley
10
64 kgSaifutdinova
12
57 kgLiu
16
52 kgBeveridge
17
55 kgLuo
19
68 kgWong Wan
28
54 kgFournier
30
60 kgBecker
31
64 kgSlappendel
33
67 kgvan Dijk
36
71 kgCanuel
38
51 kgArndt
39
59 kgVisser
40
59 kgHosking
45
60 kgMin
47
56 kgKasper
48
59 kgSandig
58
62 kgMarche
59
58 kgPavlukhina
67
68 kg
Weight (KG) →
Result →
75
51
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | TEUTENBERG Ina-Yoko | 64 |
2 | WILD Kirsten | 75 |
4 | GILMORE Rochelle | 56 |
10 | CHEATLEY Catherine | 64 |
12 | SAIFUTDINOVA Natalya | 57 |
16 | LIU Xin | 52 |
17 | BEVERIDGE Julie | 55 |
19 | LUO Xiao Ling | 68 |
28 | WONG WAN Yiu | 54 |
30 | FOURNIER Roxane | 60 |
31 | BECKER Charlotte | 64 |
33 | SLAPPENDEL Iris | 67 |
36 | VAN DIJK Ellen | 71 |
38 | CANUEL Karol-Ann | 51 |
39 | ARNDT Judith | 59 |
40 | VISSER Adrie | 59 |
45 | HOSKING Chloe | 60 |
47 | MIN Gao | 56 |
48 | KASPER Romy | 59 |
58 | SANDIG Madeleine | 62 |
59 | MARCHE Shara | 58 |
67 | PAVLUKHINA Olena | 68 |