Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 79
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Wild
1
75 kgTeutenberg
2
64 kgGilmore
3
56 kgvan Dijk
7
71 kgSlappendel
13
67 kgSaifutdinova
16
57 kgCheatley
18
64 kgLiu
21
52 kgBeveridge
27
55 kgCanuel
36
51 kgFournier
37
60 kgHosking
38
60 kgWong Wan
44
54 kgBecker
45
64 kgMin
48
56 kgArndt
59
59 kgSandig
66
62 kgPavlukhina
73
68 kgLuo
74
68 kgMarche
75
58 kgVisser
82
59 kgKasper
88
59 kg
1
75 kgTeutenberg
2
64 kgGilmore
3
56 kgvan Dijk
7
71 kgSlappendel
13
67 kgSaifutdinova
16
57 kgCheatley
18
64 kgLiu
21
52 kgBeveridge
27
55 kgCanuel
36
51 kgFournier
37
60 kgHosking
38
60 kgWong Wan
44
54 kgBecker
45
64 kgMin
48
56 kgArndt
59
59 kgSandig
66
62 kgPavlukhina
73
68 kgLuo
74
68 kgMarche
75
58 kgVisser
82
59 kgKasper
88
59 kg
Weight (KG) →
Result →
75
51
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | WILD Kirsten | 75 |
2 | TEUTENBERG Ina-Yoko | 64 |
3 | GILMORE Rochelle | 56 |
7 | VAN DIJK Ellen | 71 |
13 | SLAPPENDEL Iris | 67 |
16 | SAIFUTDINOVA Natalya | 57 |
18 | CHEATLEY Catherine | 64 |
21 | LIU Xin | 52 |
27 | BEVERIDGE Julie | 55 |
36 | CANUEL Karol-Ann | 51 |
37 | FOURNIER Roxane | 60 |
38 | HOSKING Chloe | 60 |
44 | WONG WAN Yiu | 54 |
45 | BECKER Charlotte | 64 |
48 | MIN Gao | 56 |
59 | ARNDT Judith | 59 |
66 | SANDIG Madeleine | 62 |
73 | PAVLUKHINA Olena | 68 |
74 | LUO Xiao Ling | 68 |
75 | MARCHE Shara | 58 |
82 | VISSER Adrie | 59 |
88 | KASPER Romy | 59 |