Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 82
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Teutenberg
1
64 kgWild
2
75 kgGilmore
3
56 kgBecker
7
64 kgCheatley
10
64 kgSaifutdinova
12
57 kgBeveridge
13
55 kgLiu
16
52 kgLuo
20
68 kgFournier
21
60 kgWong Wan
30
54 kgSlappendel
43
67 kgvan Dijk
51
71 kgCanuel
54
51 kgMin
62
56 kgPavlukhina
64
68 kgMarche
71
58 kgHosking
82
60 kgSandig
83
62 kgArndt
86
59 kgKasper
88
59 kgVisser
90
59 kg
1
64 kgWild
2
75 kgGilmore
3
56 kgBecker
7
64 kgCheatley
10
64 kgSaifutdinova
12
57 kgBeveridge
13
55 kgLiu
16
52 kgLuo
20
68 kgFournier
21
60 kgWong Wan
30
54 kgSlappendel
43
67 kgvan Dijk
51
71 kgCanuel
54
51 kgMin
62
56 kgPavlukhina
64
68 kgMarche
71
58 kgHosking
82
60 kgSandig
83
62 kgArndt
86
59 kgKasper
88
59 kgVisser
90
59 kg
Weight (KG) →
Result →
75
51
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | TEUTENBERG Ina-Yoko | 64 |
2 | WILD Kirsten | 75 |
3 | GILMORE Rochelle | 56 |
7 | BECKER Charlotte | 64 |
10 | CHEATLEY Catherine | 64 |
12 | SAIFUTDINOVA Natalya | 57 |
13 | BEVERIDGE Julie | 55 |
16 | LIU Xin | 52 |
20 | LUO Xiao Ling | 68 |
21 | FOURNIER Roxane | 60 |
30 | WONG WAN Yiu | 54 |
43 | SLAPPENDEL Iris | 67 |
51 | VAN DIJK Ellen | 71 |
54 | CANUEL Karol-Ann | 51 |
62 | MIN Gao | 56 |
64 | PAVLUKHINA Olena | 68 |
71 | MARCHE Shara | 58 |
82 | HOSKING Chloe | 60 |
83 | SANDIG Madeleine | 62 |
86 | ARNDT Judith | 59 |
88 | KASPER Romy | 59 |
90 | VISSER Adrie | 59 |