Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.4 * weight + 171
This means that on average for every extra kilogram weight a rider loses -2.4 positions in the result.
Consonni
1
59 kgPikulik
3
54 kgTserakh
4
70 kgFidanza
5
60 kgBaker
6
66 kgZabelinskaya
7
52 kgColes-Lyster
9
61 kgGuazzini
11
65 kgBarbieri
16
55 kgDronova-Balabolina
17
63 kgDuval
19
53 kgFahlin
22
63 kgJaskulska
28
52 kgPirrone
35
63 kgKessler
42
60 kgSmulders
47
51 kgJounier
48
58 kgKhatuntseva
50
54 kgLach
53
59 kgKoster
58
56 kgYonamine
67
51 kgAllen
90
55 kgMalcotti
94
52 kg
1
59 kgPikulik
3
54 kgTserakh
4
70 kgFidanza
5
60 kgBaker
6
66 kgZabelinskaya
7
52 kgColes-Lyster
9
61 kgGuazzini
11
65 kgBarbieri
16
55 kgDronova-Balabolina
17
63 kgDuval
19
53 kgFahlin
22
63 kgJaskulska
28
52 kgPirrone
35
63 kgKessler
42
60 kgSmulders
47
51 kgJounier
48
58 kgKhatuntseva
50
54 kgLach
53
59 kgKoster
58
56 kgYonamine
67
51 kgAllen
90
55 kgMalcotti
94
52 kg
Weight (KG) →
Result →
70
51
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | CONSONNI Chiara | 59 |
3 | PIKULIK Daria | 54 |
4 | TSERAKH Hanna | 70 |
5 | FIDANZA Martina | 60 |
6 | BAKER Georgia | 66 |
7 | ZABELINSKAYA Olga | 52 |
9 | COLES-LYSTER Maggie | 61 |
11 | GUAZZINI Vittoria | 65 |
16 | BARBIERI Rachele | 55 |
17 | DRONOVA-BALABOLINA Tamara | 63 |
19 | DUVAL Eugénie | 53 |
22 | FAHLIN Emilia | 63 |
28 | JASKULSKA Marta | 52 |
35 | PIRRONE Elena | 63 |
42 | KESSLER Nina | 60 |
47 | SMULDERS Silke | 51 |
48 | JOUNIER Lucie | 58 |
50 | KHATUNTSEVA Gulnaz | 54 |
53 | LACH Marta | 59 |
58 | KOSTER Anouska | 56 |
67 | YONAMINE Eri | 51 |
90 | ALLEN Jessica | 55 |
94 | MALCOTTI Barbara | 52 |