Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 130
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
Zanardi
3
56 kgManeephan
11
59 kgPikulik
13
54 kgColes-Lyster
15
61 kgTserakh
16
70 kgSchweinberger
18
63 kgBeuling
20
65 kgDocx
21
52 kgDronova-Balabolina
25
63 kgGreenwood
29
60 kgTacey
34
62 kgPintar
37
56 kgNerlo
38
65 kgTeruel
40
56 kgLach
46
59 kgJaskulska
47
52 kgSomrat
57
56 kgPirrone
68
63 kgNontasin
75
58 kgMalcotti
78
52 kgNuntana
96
55 kg
3
56 kgManeephan
11
59 kgPikulik
13
54 kgColes-Lyster
15
61 kgTserakh
16
70 kgSchweinberger
18
63 kgBeuling
20
65 kgDocx
21
52 kgDronova-Balabolina
25
63 kgGreenwood
29
60 kgTacey
34
62 kgPintar
37
56 kgNerlo
38
65 kgTeruel
40
56 kgLach
46
59 kgJaskulska
47
52 kgSomrat
57
56 kgPirrone
68
63 kgNontasin
75
58 kgMalcotti
78
52 kgNuntana
96
55 kg
Weight (KG) →
Result →
70
52
3
96
# | Rider | Weight (KG) |
---|---|---|
3 | ZANARDI Silvia | 56 |
11 | MANEEPHAN Jutatip | 59 |
13 | PIKULIK Daria | 54 |
15 | COLES-LYSTER Maggie | 61 |
16 | TSERAKH Hanna | 70 |
18 | SCHWEINBERGER Kathrin | 63 |
20 | BEULING Femke | 65 |
21 | DOCX Mieke | 52 |
25 | DRONOVA-BALABOLINA Tamara | 63 |
29 | GREENWOOD Monica | 60 |
34 | TACEY April | 62 |
37 | PINTAR Urška | 56 |
38 | NERLO Aurela | 65 |
40 | TERUEL Alba | 56 |
46 | LACH Marta | 59 |
47 | JASKULSKA Marta | 52 |
57 | SOMRAT Phetdarin | 56 |
68 | PIRRONE Elena | 63 |
75 | NONTASIN Chanpeng | 58 |
78 | MALCOTTI Barbara | 52 |
96 | NUNTANA Supaksorn | 55 |