Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2 * weight + 154
This means that on average for every extra kilogram weight a rider loses -2 positions in the result.
Lach
1
59 kgSchweinberger
3
63 kgTeruel
4
56 kgColes-Lyster
5
61 kgZanardi
6
56 kgManeephan
8
59 kgDocx
17
52 kgBeuling
24
65 kgTserakh
26
70 kgGreenwood
28
60 kgPirrone
32
63 kgTacey
37
62 kgNerlo
42
65 kgPikulik
44
54 kgPintar
47
56 kgDronova-Balabolina
51
63 kgJaskulska
65
52 kgSomrat
71
56 kgNuntana
72
55 kgNontasin
74
58 kgMalcotti
96
52 kg
1
59 kgSchweinberger
3
63 kgTeruel
4
56 kgColes-Lyster
5
61 kgZanardi
6
56 kgManeephan
8
59 kgDocx
17
52 kgBeuling
24
65 kgTserakh
26
70 kgGreenwood
28
60 kgPirrone
32
63 kgTacey
37
62 kgNerlo
42
65 kgPikulik
44
54 kgPintar
47
56 kgDronova-Balabolina
51
63 kgJaskulska
65
52 kgSomrat
71
56 kgNuntana
72
55 kgNontasin
74
58 kgMalcotti
96
52 kg
Weight (KG) →
Result →
70
52
1
96
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | LACH Marta | 59 |
| 3 | SCHWEINBERGER Kathrin | 63 |
| 4 | TERUEL Alba | 56 |
| 5 | COLES-LYSTER Maggie | 61 |
| 6 | ZANARDI Silvia | 56 |
| 8 | MANEEPHAN Jutatip | 59 |
| 17 | DOCX Mieke | 52 |
| 24 | BEULING Femke | 65 |
| 26 | TSERAKH Hanna | 70 |
| 28 | GREENWOOD Monica | 60 |
| 32 | PIRRONE Elena | 63 |
| 37 | TACEY April | 62 |
| 42 | NERLO Aurela | 65 |
| 44 | PIKULIK Daria | 54 |
| 47 | PINTAR Urška | 56 |
| 51 | DRONOVA-BALABOLINA Tamara | 63 |
| 65 | JASKULSKA Marta | 52 |
| 71 | SOMRAT Phetdarin | 56 |
| 72 | NUNTANA Supaksorn | 55 |
| 74 | NONTASIN Chanpeng | 58 |
| 96 | MALCOTTI Barbara | 52 |