Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 148
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Lach
1
59 kgZanardi
4
56 kgSchweinberger
6
63 kgPikulik
8
54 kgDocx
9
52 kgManeephan
13
59 kgBeuling
17
65 kgColes-Lyster
20
61 kgTserakh
22
70 kgNerlo
33
65 kgDronova-Balabolina
34
63 kgTacey
42
62 kgSomrat
46
56 kgNontasin
51
58 kgNuntana
57
55 kgPirrone
60
63 kgMalcotti
67
52 kgGreenwood
71
60 kgPintar
80
56 kgTeruel
85
56 kgJaskulska
93
52 kg
1
59 kgZanardi
4
56 kgSchweinberger
6
63 kgPikulik
8
54 kgDocx
9
52 kgManeephan
13
59 kgBeuling
17
65 kgColes-Lyster
20
61 kgTserakh
22
70 kgNerlo
33
65 kgDronova-Balabolina
34
63 kgTacey
42
62 kgSomrat
46
56 kgNontasin
51
58 kgNuntana
57
55 kgPirrone
60
63 kgMalcotti
67
52 kgGreenwood
71
60 kgPintar
80
56 kgTeruel
85
56 kgJaskulska
93
52 kg
Weight (KG) →
Result →
70
52
1
93
# | Rider | Weight (KG) |
---|---|---|
1 | LACH Marta | 59 |
4 | ZANARDI Silvia | 56 |
6 | SCHWEINBERGER Kathrin | 63 |
8 | PIKULIK Daria | 54 |
9 | DOCX Mieke | 52 |
13 | MANEEPHAN Jutatip | 59 |
17 | BEULING Femke | 65 |
20 | COLES-LYSTER Maggie | 61 |
22 | TSERAKH Hanna | 70 |
33 | NERLO Aurela | 65 |
34 | DRONOVA-BALABOLINA Tamara | 63 |
42 | TACEY April | 62 |
46 | SOMRAT Phetdarin | 56 |
51 | NONTASIN Chanpeng | 58 |
57 | NUNTANA Supaksorn | 55 |
60 | PIRRONE Elena | 63 |
67 | MALCOTTI Barbara | 52 |
71 | GREENWOOD Monica | 60 |
80 | PINTAR Urška | 56 |
85 | TERUEL Alba | 56 |
93 | JASKULSKA Marta | 52 |