Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Dronova-Balabolina
3
63 kgMarkus
4
61 kgDocx
5
52 kgBalsamo
9
55 kgBaker
10
66 kgSklyarova
12
57 kgSchweinberger
13
63 kgNorsgaard
15
65 kgGreenwood
22
60 kgManeephan
33
59 kgCasagranda
34
58 kgSomrat
36
56 kgvan der Hulst
43
66 kgTacey
47
62 kgTeruel
50
56 kgZanardi
77
56 kgColes-Lyster
79
61 kg
3
63 kgMarkus
4
61 kgDocx
5
52 kgBalsamo
9
55 kgBaker
10
66 kgSklyarova
12
57 kgSchweinberger
13
63 kgNorsgaard
15
65 kgGreenwood
22
60 kgManeephan
33
59 kgCasagranda
34
58 kgSomrat
36
56 kgvan der Hulst
43
66 kgTacey
47
62 kgTeruel
50
56 kgZanardi
77
56 kgColes-Lyster
79
61 kg
Weight (KG) →
Result →
66
52
3
79
# | Rider | Weight (KG) |
---|---|---|
3 | DRONOVA-BALABOLINA Tamara | 63 |
4 | MARKUS Riejanne | 61 |
5 | DOCX Mieke | 52 |
9 | BALSAMO Elisa | 55 |
10 | BAKER Georgia | 66 |
12 | SKLYAROVA Yelizaveta | 57 |
13 | SCHWEINBERGER Kathrin | 63 |
15 | NORSGAARD Emma | 65 |
22 | GREENWOOD Monica | 60 |
33 | MANEEPHAN Jutatip | 59 |
34 | CASAGRANDA Andrea | 58 |
36 | SOMRAT Phetdarin | 56 |
43 | VAN DER HULST Amber | 66 |
47 | TACEY April | 62 |
50 | TERUEL Alba | 56 |
77 | ZANARDI Silvia | 56 |
79 | COLES-LYSTER Maggie | 61 |