Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Balsamo
3
55 kgBaker
5
66 kgSchweinberger
7
63 kgManeephan
12
59 kgCopponi
14
55 kgDocx
15
52 kgGreenwood
16
60 kgSklyarova
21
57 kgDronova-Balabolina
31
63 kgNorsgaard
37
65 kgCasagranda
39
58 kgvan der Hulst
45
66 kgTeruel
46
56 kgMarkus
47
61 kgSomrat
51
56 kgTacey
54
62 kgZanardi
62
56 kgHenderson
67
58 kgColes-Lyster
80
61 kg
3
55 kgBaker
5
66 kgSchweinberger
7
63 kgManeephan
12
59 kgCopponi
14
55 kgDocx
15
52 kgGreenwood
16
60 kgSklyarova
21
57 kgDronova-Balabolina
31
63 kgNorsgaard
37
65 kgCasagranda
39
58 kgvan der Hulst
45
66 kgTeruel
46
56 kgMarkus
47
61 kgSomrat
51
56 kgTacey
54
62 kgZanardi
62
56 kgHenderson
67
58 kgColes-Lyster
80
61 kg
Weight (KG) →
Result →
66
52
3
80
# | Rider | Weight (KG) |
---|---|---|
3 | BALSAMO Elisa | 55 |
5 | BAKER Georgia | 66 |
7 | SCHWEINBERGER Kathrin | 63 |
12 | MANEEPHAN Jutatip | 59 |
14 | COPPONI Clara | 55 |
15 | DOCX Mieke | 52 |
16 | GREENWOOD Monica | 60 |
21 | SKLYAROVA Yelizaveta | 57 |
31 | DRONOVA-BALABOLINA Tamara | 63 |
37 | NORSGAARD Emma | 65 |
39 | CASAGRANDA Andrea | 58 |
45 | VAN DER HULST Amber | 66 |
46 | TERUEL Alba | 56 |
47 | MARKUS Riejanne | 61 |
51 | SOMRAT Phetdarin | 56 |
54 | TACEY April | 62 |
62 | ZANARDI Silvia | 56 |
67 | HENDERSON Anna | 58 |
80 | COLES-LYSTER Maggie | 61 |