Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 17
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Markus
2
61 kgDronova-Balabolina
5
63 kgDocx
6
52 kgBaker
10
66 kgBalsamo
18
55 kgGreenwood
21
60 kgSomrat
27
56 kgCasagranda
32
58 kgTacey
36
62 kgSklyarova
37
57 kgManeephan
41
59 kgvan der Hulst
57
66 kgNorsgaard
77
65 kgTeruel
78
56 kgSchweinberger
83
63 kgZanardi
85
56 kgColes-Lyster
86
61 kg
2
61 kgDronova-Balabolina
5
63 kgDocx
6
52 kgBaker
10
66 kgBalsamo
18
55 kgGreenwood
21
60 kgSomrat
27
56 kgCasagranda
32
58 kgTacey
36
62 kgSklyarova
37
57 kgManeephan
41
59 kgvan der Hulst
57
66 kgNorsgaard
77
65 kgTeruel
78
56 kgSchweinberger
83
63 kgZanardi
85
56 kgColes-Lyster
86
61 kg
Weight (KG) →
Result →
66
52
2
86
| # | Rider | Weight (KG) |
|---|---|---|
| 2 | MARKUS Riejanne | 61 |
| 5 | DRONOVA-BALABOLINA Tamara | 63 |
| 6 | DOCX Mieke | 52 |
| 10 | BAKER Georgia | 66 |
| 18 | BALSAMO Elisa | 55 |
| 21 | GREENWOOD Monica | 60 |
| 27 | SOMRAT Phetdarin | 56 |
| 32 | CASAGRANDA Andrea | 58 |
| 36 | TACEY April | 62 |
| 37 | SKLYAROVA Yelizaveta | 57 |
| 41 | MANEEPHAN Jutatip | 59 |
| 57 | VAN DER HULST Amber | 66 |
| 77 | NORSGAARD Emma | 65 |
| 78 | TERUEL Alba | 56 |
| 83 | SCHWEINBERGER Kathrin | 63 |
| 85 | ZANARDI Silvia | 56 |
| 86 | COLES-LYSTER Maggie | 61 |