Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 88
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Sapa
1
82 kgHegreberg
4
72 kgMahorič
5
68 kgKišerlovski
10
72 kgRogina
15
70 kgPorsev
19
80 kgSagan
23
65 kgShilov
28
67 kgFirsanov
36
58 kgSaramotins
46
75 kgLagkuti
47
68 kgKump
51
68 kgJovanović
56
60 kgĐurasek
63
56 kgMetlushenko
65
82 kgKvasina
66
72 kgBroniš
69
74 kgKomar
72
73 kgBajc
73
65 kgRomanik
74
62 kgTybor
75
72 kgKönig
78
62 kgMironov
81
68 kgTomić
94
79 kg
1
82 kgHegreberg
4
72 kgMahorič
5
68 kgKišerlovski
10
72 kgRogina
15
70 kgPorsev
19
80 kgSagan
23
65 kgShilov
28
67 kgFirsanov
36
58 kgSaramotins
46
75 kgLagkuti
47
68 kgKump
51
68 kgJovanović
56
60 kgĐurasek
63
56 kgMetlushenko
65
82 kgKvasina
66
72 kgBroniš
69
74 kgKomar
72
73 kgBajc
73
65 kgRomanik
74
62 kgTybor
75
72 kgKönig
78
62 kgMironov
81
68 kgTomić
94
79 kg
Weight (KG) →
Result →
82
56
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | SAPA Marcin | 82 |
4 | HEGREBERG Morten | 72 |
5 | MAHORIČ Mitja | 68 |
10 | KIŠERLOVSKI Robert | 72 |
15 | ROGINA Radoslav | 70 |
19 | PORSEV Alexander | 80 |
23 | SAGAN Juraj | 65 |
28 | SHILOV Sergey | 67 |
36 | FIRSANOV Sergey | 58 |
46 | SARAMOTINS Aleksejs | 75 |
47 | LAGKUTI Sergiy | 68 |
51 | KUMP Marko | 68 |
56 | JOVANOVIĆ Nebojša | 60 |
63 | ĐURASEK Kristijan | 56 |
65 | METLUSHENKO Yuri | 82 |
66 | KVASINA Matija | 72 |
69 | BRONIŠ Roman | 74 |
72 | KOMAR Mateusz | 73 |
73 | BAJC Andi | 65 |
74 | ROMANIK Radosław | 62 |
75 | TYBOR Patrik | 72 |
78 | KÖNIG Leopold | 62 |
81 | MIRONOV Alexander | 68 |
94 | TOMIĆ Marko | 79 |