Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 40
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Rogina
2
70 kgFirsanov
8
58 kgMahorič
10
68 kgHegreberg
12
72 kgKönig
13
62 kgMironov
15
68 kgRomanik
16
62 kgKišerlovski
17
72 kgSaramotins
22
75 kgSapa
24
82 kgBroniš
27
74 kgKvasina
31
72 kgShilov
37
67 kgPorsev
38
80 kgLagkuti
39
68 kgJovanović
60
60 kgMetlushenko
63
82 kgSagan
71
65 kgBajc
73
65 kgTybor
74
72 kgTomić
82
79 kgĐurasek
90
56 kgKump
94
68 kgKomar
103
73 kg
2
70 kgFirsanov
8
58 kgMahorič
10
68 kgHegreberg
12
72 kgKönig
13
62 kgMironov
15
68 kgRomanik
16
62 kgKišerlovski
17
72 kgSaramotins
22
75 kgSapa
24
82 kgBroniš
27
74 kgKvasina
31
72 kgShilov
37
67 kgPorsev
38
80 kgLagkuti
39
68 kgJovanović
60
60 kgMetlushenko
63
82 kgSagan
71
65 kgBajc
73
65 kgTybor
74
72 kgTomić
82
79 kgĐurasek
90
56 kgKump
94
68 kgKomar
103
73 kg
Weight (KG) →
Result →
82
56
2
103
# | Rider | Weight (KG) |
---|---|---|
2 | ROGINA Radoslav | 70 |
8 | FIRSANOV Sergey | 58 |
10 | MAHORIČ Mitja | 68 |
12 | HEGREBERG Morten | 72 |
13 | KÖNIG Leopold | 62 |
15 | MIRONOV Alexander | 68 |
16 | ROMANIK Radosław | 62 |
17 | KIŠERLOVSKI Robert | 72 |
22 | SARAMOTINS Aleksejs | 75 |
24 | SAPA Marcin | 82 |
27 | BRONIŠ Roman | 74 |
31 | KVASINA Matija | 72 |
37 | SHILOV Sergey | 67 |
38 | PORSEV Alexander | 80 |
39 | LAGKUTI Sergiy | 68 |
60 | JOVANOVIĆ Nebojša | 60 |
63 | METLUSHENKO Yuri | 82 |
71 | SAGAN Juraj | 65 |
73 | BAJC Andi | 65 |
74 | TYBOR Patrik | 72 |
82 | TOMIĆ Marko | 79 |
90 | ĐURASEK Kristijan | 56 |
94 | KUMP Marko | 68 |
103 | KOMAR Mateusz | 73 |