Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 36
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Mahorič
1
68 kgKönig
5
62 kgHegreberg
6
72 kgBroniš
9
74 kgKišerlovski
11
72 kgRogina
15
70 kgKvasina
16
72 kgFirsanov
17
58 kgSapa
22
82 kgPorsev
24
80 kgJovanović
26
60 kgSagan
34
65 kgBajc
36
65 kgRomanik
37
62 kgMironov
42
68 kgSaramotins
45
75 kgTybor
49
72 kgLagkuti
54
68 kgTomić
66
79 kgKomar
78
73 kgMetlushenko
88
82 kgShilov
93
67 kgĐurasek
94
56 kgKump
102
68 kg
1
68 kgKönig
5
62 kgHegreberg
6
72 kgBroniš
9
74 kgKišerlovski
11
72 kgRogina
15
70 kgKvasina
16
72 kgFirsanov
17
58 kgSapa
22
82 kgPorsev
24
80 kgJovanović
26
60 kgSagan
34
65 kgBajc
36
65 kgRomanik
37
62 kgMironov
42
68 kgSaramotins
45
75 kgTybor
49
72 kgLagkuti
54
68 kgTomić
66
79 kgKomar
78
73 kgMetlushenko
88
82 kgShilov
93
67 kgĐurasek
94
56 kgKump
102
68 kg
Weight (KG) →
Result →
82
56
1
102
# | Rider | Weight (KG) |
---|---|---|
1 | MAHORIČ Mitja | 68 |
5 | KÖNIG Leopold | 62 |
6 | HEGREBERG Morten | 72 |
9 | BRONIŠ Roman | 74 |
11 | KIŠERLOVSKI Robert | 72 |
15 | ROGINA Radoslav | 70 |
16 | KVASINA Matija | 72 |
17 | FIRSANOV Sergey | 58 |
22 | SAPA Marcin | 82 |
24 | PORSEV Alexander | 80 |
26 | JOVANOVIĆ Nebojša | 60 |
34 | SAGAN Juraj | 65 |
36 | BAJC Andi | 65 |
37 | ROMANIK Radosław | 62 |
42 | MIRONOV Alexander | 68 |
45 | SARAMOTINS Aleksejs | 75 |
49 | TYBOR Patrik | 72 |
54 | LAGKUTI Sergiy | 68 |
66 | TOMIĆ Marko | 79 |
78 | KOMAR Mateusz | 73 |
88 | METLUSHENKO Yuri | 82 |
93 | SHILOV Sergey | 67 |
94 | ĐURASEK Kristijan | 56 |
102 | KUMP Marko | 68 |