Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Paterski
1
73 kgSimón
2
64 kgTizza
3
58 kgRoglič
4
65 kgKvasina
5
72 kgSzmyd
6
60 kgRogina
7
70 kgRavasi
8
61 kgHenttala
9
73 kgParrinello
10
68 kgGolčer
11
66.5 kgvan der Hoorn
12
73 kgFirsanov
13
58 kgVan Zummeren
14
73 kgTurek
15
72 kgBernas
16
77 kgBodnar
18
68 kgBille
19
67 kg
1
73 kgSimón
2
64 kgTizza
3
58 kgRoglič
4
65 kgKvasina
5
72 kgSzmyd
6
60 kgRogina
7
70 kgRavasi
8
61 kgHenttala
9
73 kgParrinello
10
68 kgGolčer
11
66.5 kgvan der Hoorn
12
73 kgFirsanov
13
58 kgVan Zummeren
14
73 kgTurek
15
72 kgBernas
16
77 kgBodnar
18
68 kgBille
19
67 kg
Weight (KG) →
Result →
77
58
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | PATERSKI Maciej | 73 |
2 | SIMÓN Jordi | 64 |
3 | TIZZA Marco | 58 |
4 | ROGLIČ Primož | 65 |
5 | KVASINA Matija | 72 |
6 | SZMYD Sylwester | 60 |
7 | ROGINA Radoslav | 70 |
8 | RAVASI Edward | 61 |
9 | HENTTALA Joonas | 73 |
10 | PARRINELLO Antonino | 68 |
11 | GOLČER Jure | 66.5 |
12 | VAN DER HOORN Taco | 73 |
13 | FIRSANOV Sergey | 58 |
14 | VAN ZUMMEREN Stef | 73 |
15 | TUREK Daniel | 72 |
16 | BERNAS Paweł | 77 |
18 | BODNAR Łukasz | 68 |
19 | BILLE Gaëtan | 67 |