Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Bole
1
69 kgPaterski
2
73 kgKump
3
68 kgFranczak
4
63 kgViganò
6
67 kgKorošec
7
75 kgMaikin
8
68 kgSoballa
9
71 kgBalykin
10
68 kgVan Zummeren
11
73 kgSimón
12
64 kgBertazzo
13
75 kgKrizek
14
74 kgGroßschartner
15
64 kgBodnar
16
68 kgTurek
18
72 kgBol
19
71 kgGonzález
20
65 kgBille
21
67 kg
1
69 kgPaterski
2
73 kgKump
3
68 kgFranczak
4
63 kgViganò
6
67 kgKorošec
7
75 kgMaikin
8
68 kgSoballa
9
71 kgBalykin
10
68 kgVan Zummeren
11
73 kgSimón
12
64 kgBertazzo
13
75 kgKrizek
14
74 kgGroßschartner
15
64 kgBodnar
16
68 kgTurek
18
72 kgBol
19
71 kgGonzález
20
65 kgBille
21
67 kg
Weight (KG) →
Result →
75
63
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | BOLE Grega | 69 |
2 | PATERSKI Maciej | 73 |
3 | KUMP Marko | 68 |
4 | FRANCZAK Paweł | 63 |
6 | VIGANÒ Davide | 67 |
7 | KOROŠEC Rok | 75 |
8 | MAIKIN Roman | 68 |
9 | SOBALLA Carl | 71 |
10 | BALYKIN Ivan | 68 |
11 | VAN ZUMMEREN Stef | 73 |
12 | SIMÓN Jordi | 64 |
13 | BERTAZZO Liam | 75 |
14 | KRIZEK Matthias | 74 |
15 | GROßSCHARTNER Felix | 64 |
16 | BODNAR Łukasz | 68 |
18 | TUREK Daniel | 72 |
19 | BOL Jetse | 71 |
20 | GONZÁLEZ Mario | 65 |
21 | BILLE Gaëtan | 67 |