Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Andresen
1
69 kgArrieta
2
64 kgHajek
3
55 kgMiholjević
4
72 kgReinderink
5
59 kgOnley
6
62 kgLeonard
8
60 kgBittner
9
73 kgAznar
10
59 kgSchwarzbacher
13
72 kgShmidt
15
76 kgTurk
17
63 kgGojković
18
68 kgRaccagni
19
63 kgPomorski
20
76 kgWiggins
24
75 kgVlot
25
57 kgSkok
26
65 kgTomšič
27
69 kgAznar
28
68 kgRadosz
29
69 kgPeran
30
64 kgŠpoljar
31
73 kg
1
69 kgArrieta
2
64 kgHajek
3
55 kgMiholjević
4
72 kgReinderink
5
59 kgOnley
6
62 kgLeonard
8
60 kgBittner
9
73 kgAznar
10
59 kgSchwarzbacher
13
72 kgShmidt
15
76 kgTurk
17
63 kgGojković
18
68 kgRaccagni
19
63 kgPomorski
20
76 kgWiggins
24
75 kgVlot
25
57 kgSkok
26
65 kgTomšič
27
69 kgAznar
28
68 kgRadosz
29
69 kgPeran
30
64 kgŠpoljar
31
73 kg
Weight (KG) →
Result →
76
55
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | ANDRESEN Tobias Lund | 69 |
2 | ARRIETA Igor | 64 |
3 | HAJEK Alexander | 55 |
4 | MIHOLJEVIĆ Fran | 72 |
5 | REINDERINK Joris | 59 |
6 | ONLEY Oscar | 62 |
8 | LEONARD Michael | 60 |
9 | BITTNER Pavel | 73 |
10 | AZNAR Hugo | 59 |
13 | SCHWARZBACHER Matthias | 72 |
15 | SHMIDT Artem | 76 |
17 | TURK Aljaž | 63 |
18 | GOJKOVIĆ Nicolas | 68 |
19 | RACCAGNI Gabriele | 63 |
20 | POMORSKI Michał | 76 |
24 | WIGGINS Ben | 75 |
25 | VLOT Mees | 57 |
26 | SKOK Marcel | 65 |
27 | TOMŠIČ Dan Andrej | 69 |
28 | AZNAR Unai | 68 |
29 | RADOSZ Maksymilian | 69 |
30 | PERAN Ian | 64 |
31 | ŠPOLJAR Jaka | 73 |