Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 27
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Valoti
1
64 kgCapelle
3
75 kgRobin
5
63 kgBlaudzun
6
66 kgBak
7
76 kgSandstød
9
74 kgJalabert
10
68 kgMcEwen
11
67 kgGasparre
12
60 kgInaudi
14
67 kgJalabert
15
66 kgHvastija
18
75 kgDe Clercq
19
66 kgMichaelsen
20
79 kgLjungqvist
21
73 kgFlammang
23
80 kgMändoja
24
69 kgZanette
25
82 kgNardello
26
74 kgSørensen
27
70 kgSunderland
29
65 kgHøj
30
80 kgArvesen
31
74 kg
1
64 kgCapelle
3
75 kgRobin
5
63 kgBlaudzun
6
66 kgBak
7
76 kgSandstød
9
74 kgJalabert
10
68 kgMcEwen
11
67 kgGasparre
12
60 kgInaudi
14
67 kgJalabert
15
66 kgHvastija
18
75 kgDe Clercq
19
66 kgMichaelsen
20
79 kgLjungqvist
21
73 kgFlammang
23
80 kgMändoja
24
69 kgZanette
25
82 kgNardello
26
74 kgSørensen
27
70 kgSunderland
29
65 kgHøj
30
80 kgArvesen
31
74 kg
Weight (KG) →
Result →
82
60
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | VALOTI Paolo | 64 |
3 | CAPELLE Ludovic | 75 |
5 | ROBIN Jean-Cyril | 63 |
6 | BLAUDZUN Michael | 66 |
7 | BAK Lars Ytting | 76 |
9 | SANDSTØD Michael | 74 |
10 | JALABERT Nicolas | 68 |
11 | MCEWEN Robbie | 67 |
12 | GASPARRE Graziano | 60 |
14 | INAUDI Nicolas | 67 |
15 | JALABERT Laurent | 66 |
18 | HVASTIJA Martin | 75 |
19 | DE CLERCQ Mario | 66 |
20 | MICHAELSEN Lars | 79 |
21 | LJUNGQVIST Marcus | 73 |
23 | FLAMMANG Tom | 80 |
24 | MÄNDOJA Innar | 69 |
25 | ZANETTE Denis | 82 |
26 | NARDELLO Daniele | 74 |
27 | SØRENSEN Rolf | 70 |
29 | SUNDERLAND Scott | 65 |
30 | HØJ Frank | 80 |
31 | ARVESEN Kurt-Asle | 74 |