Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Mändoja
1
69 kgEngoulvent
3
82 kgKristensen
4
70 kgBramati
6
72 kgHaselbacher
7
69 kgKirsipuu
8
80 kgBodrogi
9
79 kgArvesen
10
74 kgHayman
11
78 kgHøj
12
80 kgScholz
13
60 kgJoly
15
74 kgCamaño
16
68 kgTombak
17
71 kgAggiano
18
63 kgDean
19
72 kgTafi
20
73 kgJohansen
21
78 kgWrolich
22
68 kgAldag
23
75 kgPiil
24
65 kgOrdowski
25
59 kgPeron
26
70 kg
1
69 kgEngoulvent
3
82 kgKristensen
4
70 kgBramati
6
72 kgHaselbacher
7
69 kgKirsipuu
8
80 kgBodrogi
9
79 kgArvesen
10
74 kgHayman
11
78 kgHøj
12
80 kgScholz
13
60 kgJoly
15
74 kgCamaño
16
68 kgTombak
17
71 kgAggiano
18
63 kgDean
19
72 kgTafi
20
73 kgJohansen
21
78 kgWrolich
22
68 kgAldag
23
75 kgPiil
24
65 kgOrdowski
25
59 kgPeron
26
70 kg
Weight (KG) →
Result →
82
59
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | MÄNDOJA Innar | 69 |
3 | ENGOULVENT Jimmy | 82 |
4 | KRISTENSEN Lennie | 70 |
6 | BRAMATI Davide | 72 |
7 | HASELBACHER René | 69 |
8 | KIRSIPUU Jaan | 80 |
9 | BODROGI László | 79 |
10 | ARVESEN Kurt-Asle | 74 |
11 | HAYMAN Mathew | 78 |
12 | HØJ Frank | 80 |
13 | SCHOLZ Ronny | 60 |
15 | JOLY Sébastien | 74 |
16 | CAMAÑO Iker | 68 |
17 | TOMBAK Janek | 71 |
18 | AGGIANO Elio | 63 |
19 | DEAN Julian | 72 |
20 | TAFI Andrea | 73 |
21 | JOHANSEN Allan | 78 |
22 | WROLICH Peter | 68 |
23 | ALDAG Rolf | 75 |
24 | PIIL Jakob Storm | 65 |
25 | ORDOWSKI Volker | 59 |
26 | PERON Andrea | 70 |