Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 77
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Lang
1
77 kgVan Goolen
2
70 kgScanlon
3
79 kgHayman
5
78 kgVaitkus
6
75 kgBoonen
7
82 kgNuyens
8
68 kgFörster
9
83 kgGeslin
10
68 kgChristensen
12
69 kgClerc
13
71 kgTankink
14
71 kgBreschel
15
70 kgEngoulvent
16
82 kgSentjens
17
75 kgTraksel
18
72 kgGardeyn
21
75 kgVoeckler
23
71 kgVan Impe
24
75 kgVanlandschoot
25
67 kgGasparre
28
60 kgKuyckx
30
68 kgPedersen
32
62 kg
1
77 kgVan Goolen
2
70 kgScanlon
3
79 kgHayman
5
78 kgVaitkus
6
75 kgBoonen
7
82 kgNuyens
8
68 kgFörster
9
83 kgGeslin
10
68 kgChristensen
12
69 kgClerc
13
71 kgTankink
14
71 kgBreschel
15
70 kgEngoulvent
16
82 kgSentjens
17
75 kgTraksel
18
72 kgGardeyn
21
75 kgVoeckler
23
71 kgVan Impe
24
75 kgVanlandschoot
25
67 kgGasparre
28
60 kgKuyckx
30
68 kgPedersen
32
62 kg
Weight (KG) →
Result →
83
60
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | LANG Sebastian | 77 |
2 | VAN GOOLEN Jurgen | 70 |
3 | SCANLON Mark | 79 |
5 | HAYMAN Mathew | 78 |
6 | VAITKUS Tomas | 75 |
7 | BOONEN Tom | 82 |
8 | NUYENS Nick | 68 |
9 | FÖRSTER Robert | 83 |
10 | GESLIN Anthony | 68 |
12 | CHRISTENSEN Mads | 69 |
13 | CLERC Aurélien | 71 |
14 | TANKINK Bram | 71 |
15 | BRESCHEL Matti | 70 |
16 | ENGOULVENT Jimmy | 82 |
17 | SENTJENS Roy | 75 |
18 | TRAKSEL Bobbie | 72 |
21 | GARDEYN Gorik | 75 |
23 | VOECKLER Thomas | 71 |
24 | VAN IMPE Kevin | 75 |
25 | VANLANDSCHOOT James | 67 |
28 | GASPARRE Graziano | 60 |
30 | KUYCKX Jan | 68 |
32 | PEDERSEN Martin | 62 |