Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Guidi
1
73 kgO'Grady
2
73 kgSentjens
4
75 kgvan Dijk
5
74 kgSteels
6
73 kgvan Heeswijk
9
73 kgBaumann
10
72 kgVaitkus
11
75 kgHunt
12
76 kgKlier
13
72 kgGeslin
14
68 kgMetlushenko
16
82 kgArvesen
18
74 kgde Jongh
22
76 kgBaldato
23
60 kgChavanel
24
77 kgBäckstedt
27
94 kg
1
73 kgO'Grady
2
73 kgSentjens
4
75 kgvan Dijk
5
74 kgSteels
6
73 kgvan Heeswijk
9
73 kgBaumann
10
72 kgVaitkus
11
75 kgHunt
12
76 kgKlier
13
72 kgGeslin
14
68 kgMetlushenko
16
82 kgArvesen
18
74 kgde Jongh
22
76 kgBaldato
23
60 kgChavanel
24
77 kgBäckstedt
27
94 kg
Weight (KG) →
Result →
94
60
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | GUIDI Fabrizio | 73 |
2 | O'GRADY Stuart | 73 |
4 | SENTJENS Roy | 75 |
5 | VAN DIJK Stefan | 74 |
6 | STEELS Tom | 73 |
9 | VAN HEESWIJK Max | 73 |
10 | BAUMANN Eric | 72 |
11 | VAITKUS Tomas | 75 |
12 | HUNT Jeremy | 76 |
13 | KLIER Andreas | 72 |
14 | GESLIN Anthony | 68 |
16 | METLUSHENKO Yuri | 82 |
18 | ARVESEN Kurt-Asle | 74 |
22 | DE JONGH Steven | 76 |
23 | BALDATO Fabio | 60 |
24 | CHAVANEL Sébastien | 77 |
27 | BÄCKSTEDT Magnus | 94 |