Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Vierhouten
1
71 kgJørgensen
2
60 kgHøj
3
80 kgBak
4
76 kgOmloop
6
78 kgvan Bon
7
72 kgTjallingii
8
81 kgReihs
9
75 kgGardeyn
11
75 kgRooijakkers
12
68 kgWeissinger
13
74 kgFothen
16
71 kgBreschel
17
70 kgSteels
18
73 kgCaccia
20
70 kgNibali
21
65 kgFuglsang
22
67 kgLund
23
65 kgvan Hummel
24
64 kg
1
71 kgJørgensen
2
60 kgHøj
3
80 kgBak
4
76 kgOmloop
6
78 kgvan Bon
7
72 kgTjallingii
8
81 kgReihs
9
75 kgGardeyn
11
75 kgRooijakkers
12
68 kgWeissinger
13
74 kgFothen
16
71 kgBreschel
17
70 kgSteels
18
73 kgCaccia
20
70 kgNibali
21
65 kgFuglsang
22
67 kgLund
23
65 kgvan Hummel
24
64 kg
Weight (KG) →
Result →
81
60
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | VIERHOUTEN Aart | 71 |
2 | JØRGENSEN René | 60 |
3 | HØJ Frank | 80 |
4 | BAK Lars Ytting | 76 |
6 | OMLOOP Geert | 78 |
7 | VAN BON Léon | 72 |
8 | TJALLINGII Maarten | 81 |
9 | REIHS Michael | 75 |
11 | GARDEYN Gorik | 75 |
12 | ROOIJAKKERS Piet | 68 |
13 | WEISSINGER René | 74 |
16 | FOTHEN Thomas | 71 |
17 | BRESCHEL Matti | 70 |
18 | STEELS Tom | 73 |
20 | CACCIA Diego | 70 |
21 | NIBALI Vincenzo | 65 |
22 | FUGLSANG Jakob | 67 |
23 | LUND Anders | 65 |
24 | VAN HUMMEL Kenny | 64 |