Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Cousin
1
74 kgWaeytens
2
67 kgLindeman
3
69 kgKragh Andersen
4
72 kgHansen
5
60 kgBrändle
6
80 kgLander
7
70 kgJuul-Jensen
10
73 kgVanoverberghe
11
65 kgColbrelli
12
74 kgAppollonio
15
67 kgBol
16
71 kgPetit
17
80 kgSelig
18
80 kgDelle Stelle
20
65 kgPelucchi
21
74 kgGuldhammer
22
66 kgBobridge
23
65 kgQuaade
24
77 kgLocatelli
26
83 kg
1
74 kgWaeytens
2
67 kgLindeman
3
69 kgKragh Andersen
4
72 kgHansen
5
60 kgBrändle
6
80 kgLander
7
70 kgJuul-Jensen
10
73 kgVanoverberghe
11
65 kgColbrelli
12
74 kgAppollonio
15
67 kgBol
16
71 kgPetit
17
80 kgSelig
18
80 kgDelle Stelle
20
65 kgPelucchi
21
74 kgGuldhammer
22
66 kgBobridge
23
65 kgQuaade
24
77 kgLocatelli
26
83 kg
Weight (KG) →
Result →
83
60
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | COUSIN Jérôme | 74 |
2 | WAEYTENS Zico | 67 |
3 | LINDEMAN Bert-Jan | 69 |
4 | KRAGH ANDERSEN Asbjørn | 72 |
5 | HANSEN Jesper | 60 |
6 | BRÄNDLE Matthias | 80 |
7 | LANDER Sebastian | 70 |
10 | JUUL-JENSEN Christopher | 73 |
11 | VANOVERBERGHE Arthur | 65 |
12 | COLBRELLI Sonny | 74 |
15 | APPOLLONIO Davide | 67 |
16 | BOL Jetse | 71 |
17 | PETIT Adrien | 80 |
18 | SELIG Rüdiger | 80 |
20 | DELLE STELLE Christian | 65 |
21 | PELUCCHI Matteo | 74 |
22 | GULDHAMMER Rasmus | 66 |
23 | BOBRIDGE Jack | 65 |
24 | QUAADE Rasmus | 77 |
26 | LOCATELLI Paolo | 83 |